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Preface

Edward Muybridge (1830–1904) is known as the pioneer in motion captur-
ing with his famous experiments in 1887 called “Animal Locomotion”. Since
then, the field of animal or human motion analysis has grown in many direc-
tions. However, research and results that involve human-like animation and
the recovery of motion is still far from being satisfactory.

The modelling, tracking, and understanding of human motion based on
video sequences as a research field has increased in importance particularly in
the last decade with the emergence of applications in sports sciences, medicine,
biomechanics, animation (online games), surveillance, and security. Progress
in human motion analysis depends on empirically anchored and grounded
research in computer vision, computer graphics, and biomechanics. Though
these fields of research are often treated separately, human motion analysis
requires the integration of methodologies from computer vision and computer
graphics. Furthermore, the understanding and use of biomechanics constraints
improves the robustness of such an approach.

This book is based on a June 2006 workshop held in Dagstuhl, Germany.
This workshop brought together for the first time researchers from the afore-
mentioned disciplines. Based on their diverse perspectives, these researchers
have been developing new methodologies and contributing, through their find-
ings, to the domain of human motion analysis. The interdisciplinary character
of the workshop allowed people to present a wide range of approaches that
helped stimulate intellectual discussions and the exchange of new ideas.

The goal of the editors of this book is to present an interdisciplinary approach
to modelling, visualization, and estimation of human motion, based on the lec-
tures given at the workshop. We invited several authors to contribute chapters
in five areas, specifically 2D processing, 3D processing, motion learning, ani-
mation and biomechanics, and mathematical foundations of motion modelling
and analysis. Approximately five chapters represent each area. Each chapter
reflects the current “state of the art” in its respective research area. In ad-
dition, many chapters present future challenges. Three experts reviewed each

ix



x Preface

chapter based on the Springer-Verlag guidelines and, if they deemed a chapter
acceptable, its author(s) were required to make revisions within a month.

This is the first edited volume by Springer-Verlag on this emerging and
increasingly important topic and similar workshops and special meetings have
already been scheduled as part of the best computer vision and graphics con-
ferences e.g., CVPR, ICCV, and Eurographics.

The editors would like to thank the authors for their contributions to this
volume and we are certain that given the importance of this interdisciplinary
domain, many more books will be published and meetings will occur.

Saarbrücken, Auckland, New Jersey Bodo Rosenhahn, Reinhard Klette, Dimitris Metaxas

July 2007
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Understanding Human Motion:
A Historic Review

Reinhard Klette1 and Garry Tee2

1 Computer Science Department
The University of Auckland, Auckland, New Zealand

2 Department of Mathematics
The University of Auckland, Auckland, New Zealand

Summary. Understanding human motion is based on analyzing global motion
patterns, rather than on studying local patterns such as hand gestures or facial ex-
pressions. This introductory chapter reviews briefly (by selection, not by attempting
to cover developments, and with a focus on Western History) people and contribu-
tions in science, art, and technology which contributed to the field of human motion
understanding. This review basically stops at the time when advanced computing
technology became available for performing motion studies based on captured image
data or extensive (model-based) calculations or simulations.

1.1 Introduction

Interest in human motion goes back very far in human history, and is mo-
tivated by curiosity, needs or methods available at a time. For example, a
biomechanical perspective is characterized by the “need for new information
on the characteristics of normal and pathological human movement” [35]. It is
also possible to outline disciplines of science (e.g., mathematics) or arts (e.g.,
paintings, sculptures), relevant to human motion, just to indicate briefly the
complexity of the subject. Obviously, different disciplines are interested in dif-
ferent aspects of the subject; biomechanics is, for example, focusing on human
locomotion, with less interest in muscle models, and when correcting motion
(e.g., of disabled children) by surgery, it will be exactly the opposite.

This chapter attempts to inform about a few developments which are of
(somehow) joint interest for computer vision, computer graphics, and biome-
chanics. Those areas collaborate increasingly in research and developments
relevant to human motion.

The following chapter could certainly be more detailed about the historic
context of developments in the understanding of human motion at various
periods of human history. For example, art was definitely a major driving
force for many centuries for specifying human motion (see, e.g., comments

1
B. Rosenhahn et al. (eds.), Human Motion – Understanding, Modelling, Capture, and

Animation, 1–22.
c© 2008 Springer.



2 R. Klette and G. Tee

on da Vinci below), or Braune and Fischer were (at the beginning of 20th
century; see below) among the first to quantitatively measure human motion,
but their work was motivated by improving the efficiency of troop movement.

Many mathematical results had been found in the early civilizations of
Mesopotamia and Egypt, but a succession of Greek thinkers (starting with
Thales, in the 6th century)1 developed mathematics as a coherent logically
organized structure of ideas. We start our review at this period of time.

1.2 Classical Antiquity

The ancient Greek philosopher Aristotle (−383 to −321) published, besides
much other fundamental work, also a (short) text ΠEPI ΠOPEIAS
ZΩIΩN [3] on the gait of animals. He defined locomotion as “the parts
which are useful to animals for movement in place”. The text is very read-
able, certainly also due to an excellent translation, and it contains discussions
of interesting questions (e.g., “why are man and birds bipeds, but fish footless;
and why do man and bird, though both bipeds, have an opposite curvature
of the legs”), links to basic knowledge in geometry (e.g., “when ... one leg is
advanced it becomes the hypothenuse of a right-angled triangle. Its square
then is equal to the square on the other side together with the square on
the base. As the legs then are equal, the one at rest must bend ... at the
knee ...”), or experiments (e.g., “If a man were to walk parallel to a wall in
sunshine, the line described (by the shadow of his head) would be not straight
but zigzag...”). This text2 is the first known document on biomechanics. It
already contains, for example, very detailed observations about the motion
patterns of humans when involved in some particular activity.

Sculptures, reliefs, or other artwork of classical antiquity demonstrate the
advanced level of understanding of human or animal motion, or body poses
(often in a historic context).

Classical antiquity already used mathematics for describing human poses
or motion, demonstrated in artworks that we have to consider individual poses
as well as collective poses (e.g., in Roman arts, a married couple was indicated
by showing eye contact between woman and man, possibly enhanced by a
pictured handshake), and showed in general that motion and poses need to be
understood in context. Motion was only presented by means of static artwork;
the first dynamic presentation of motion was by means of moving pictures,
and this came nearly 2000 years later, at the end of the 19th century.

A charioteer with horses four-in-hand traditionally had the horses gallop
in a race, where gallop is defined as a certain step-sequence by the horses, also

1 We use the astronomical system for numbering years.
2 In close relation with Aristotle’s texts ΠEPI ZΩIΩN ΓENEΣEΩΣ (On the

Parts of Animals) and ΠEPI ZΩIΩN KINHΣEΩΣ (On the Progression of An-
imals).
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Fig. 1.1. A modification of a drawing published by W. F. Bartels on www.
kutschen.com/Gelenke.htm.

including a period of suspension with no hoof touching the ground. However,
until the invention of moving pictures, it was an open question whether such
a period of suspension does occur.

In classical antiquity, motion patterns of humans were usually studied in
close relation to motion patterns of animals. Indeed, those comparative studies
have continued to be useful: see Figure 1.1 illustrating evolutionary relations
between joints of humans and horses.

Human motion studies today are basically performed by modelling human
(dynamic) shape, and by applying perspective geometry (when understand-
ing recorded image sequences or creating animations). Basics of the geometry
of three-dimensional (3D) volumes and, to a lesser extent, also of perspec-
tive geometry, date back to classical antiquity [13]. Perspective emerged (at
first) from geometrical optics (see, e.g., Euclid’s3 OΠTIKH (Optics), defin-
ing visual rays or visual cones), and it received a major stimulus in art of the
European Renaissance (see next section).

1.3 Renaissance

Leonardo da Vinci (1452–1519) stated in his sketchbooks, that “it is indis-
pensable for a painter, to become totally familiar with the anatomy of nerves,
bones, muscles, and sinews, such that he understands for their various mo-
tions and stresses, which sinews or which muscle causes a particular motion”

3 Euclid worked at the Museion in Alexandria (in about −300), writing on math-
ematics, optics, astronomy and harmony. His “Elements” gives a very detailed
study of plane and solid geometry (together with number theory), and it became
one of the most influential books ever written. His treatment of geometrical optics
formed a basis for the theory of perspective.
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Fig. 1.2. Fragments from da Vinci’s sketchbooks (human faces).

of a human.4 For an example of his modelling of the human anatomy, see
Figure 1.2 on the left and in the middle. In his mirror writing he wrote that
“m c measures 1/3 of n m, measured from the outer angle of the eye lid to
letter c” and “b s corresponds to the width of the nostril”. However, a few
pages later he showed “funny faces” in his sketchbook (for a few, see right
of Figure 1.2), illustrating that a match between model and reality was not
always given.

Besides very detailed models of the human anatomy, also characterizing
special appearances such as parameters of “a beautiful face” (e.g., in his opin-
ion, in such a face the width of the mouth equals the distance between the
middle line of the mouth to the bottom of the chin), da Vinci’s sketchbooks
also contain quite detailed studies about kinematic trees5 of human motion.
For a man going upstairs (see left of Figure 1.3), he writes: “The center of
mass of a human who is lifting one foot, is always on top of the center of the
sole of foot [on which he is standing]. A human going upstairs shifts weight
forward and to the upper foot, creating a counterweight against the lower leg,
such that the workout of the lower leg is reduced to moving itself. When going
upstairs, a human starts with relieving body weight from that foot which he
is going to lift. Furthermore, he dislocates the remaining body mass onto the
opposite leg, including the [weight of the] other leg. Then he lifts this other leg
and places the foot on the step, which he likes to climb on. Next he dislocates
the whole body weight, including that of this leg, onto the upper foot, puts
his hand onto his thigh, slides his head forward, and moves towards the tip
of the upper foot, quickly lifting the heel of the lower foot. With this push he

4 Quotations of da Vinci are translated from [16]. Today, various books are pub-
lished on human anatomy specially designed for artists; see, for example, [5].

5 Today, kinematic chains are used for modelling propagations, e.g. of forces, over
time along a body part such as an arm or a leg. Da Vinci already considered
“divisions” in those propagations (e.g., from the upper body to both the left and
the right leg), here indicated by using the name tree rather than chain.
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Fig. 1.3. Drawing in da Vinci’s sketchbooks (a man going upstairs, or up a ladder).

lifts himself upward, simultaneously he straightens the arm which was resting
on the knee. This stretching of the arm pushes body and head upward, and
thus also straightens the back which was bended before.”

Next to the drawing, shown on the right of Figure 1.3, da Vinci wrote the
following: “I ask for the weight [pressure] of this man for every segment of
motion when climbing those stairs, and for the weight he places on b and on
c. Note the vertical line below the center of mass of this man.”

It is certainly impressive to see the level of detail in modelling human shape
or motion, given by da Vinci centuries ago. This was illustrated above just by
examples, and a comprehensive biomechanical study about his contributions
would be a sensible project.

Michelangelo di Lodovico Buonarroti Simoni (1475–1564) is also famous
for his realistically portrayed human motion.

Perspective geometry (required for proper modelling of human motion)
was established by means of drawing rules by artists of the Renaissance,
such as Filippo Di Ser Brunellesco (1377–1446), Piero della Francesca (1420?–
1492), Albrecht Dürer (1471–1528), Raphael (1483–1520), and many others.
Perspective geometry also became a mathematical theory, pioneered by Girard
Desargues (1591–1661) at the beginning of the Baroque era.

1.4 Baroque

The scientist Giovanni Alfonso Borelli (1608–1679) contributed to various dis-
ciplines. In his “On the Movement of Animals” [8] (published posthumously
in two parts in 1680 and 1681) he applied to biology the analytical and geo-
metrical methods, developed by Galileo Galilei (1564–1642)6 in the field of
6 Galileo Galilei became a major founder of modern science, applying analytical and

geometrical methods in the field of mechanics, combining theory and experiment.
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Fig. 1.4. Copper engraving by Borelli in 1680/1681 (Deutsches Museum, Munich).

mechanics.7 For this reason he is also often called “the father of biomechan-
ics” (with Aristotle as a second alternative, see Section 1), or (one of) the
founder(s) of the Iatrophysic School (also called iatromathematic, iatrome-
chanic, or physiatric). A result of basic importance for establishing this school
is that the circulation of the blood is comparable to a hydraulic system. This
school vanished after some years, but some of the work of Borelli is still worth
noting today. He “was the first to understand that the levers of the mus-
culoskeletal system magnify motion rather than force, so that muscles must
produce much larger forces than those resisting the motion” [32]. Bones serve
as levers and muscles function according to mathematical principles; this be-
came a basic principle for modelling human motion.

Figure 1.4 shows an example of a drawing from [8]. The physiological
studies in this text (including muscle analysis and a mathematical discussion
of movements, such as running or jumping) are based on solid mechanical

7 Borelli’s great work is almost wholly a study of animal statics, since Newton had
not yet developed the mathematics of dynamics.
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principles. The change from visual (qualitative) observation to quantitative
measurements was crucial for the emergence of biomechanics. Borelli also
attempted [8] to clarify the reason for muscle fatigue and to explain organ
secretion, and he considered the concept of pain.

1.5 Age of Enlightenment

There seem to be not many important contributions to the study of human
motion, between the times of Borelli and the latter half of the 19th century,
when chronophotography provided a new tool for understanding motion.

Besides studies on human or animal motion in a narrow sense, the founda-
tion of modern dynamics by Isaac Newton (1642–1727),8 including his three
laws of motion, was also a very crucial contribution to the understanding of
human motion (these laws are formulated here for this case, slightly modified
from [41]):

Newton’s Law of Inertia. A human in motion will continue moving in the
same direction at the same speed unless some external force (like gravity or
friction) acts to change the motion characteristics. (This law was already
formulated by Galileo Galilei.)
Newton’s Law of Acceleration. F = ma. A force F acting on a human
motion will cause an acceleration a in the direction of the force and pro-
portional to the strength of the force (m is the mass of the human).9

Newton’s Law of Action-Reaction. A human’s motion against a medium
(such as another body) is matched with a reaction force of equal magnitude
but opposite direction.

All three laws had been discussed already in some sense by Aristotle when
considering the motions of a boat. According to Aristotle, “every movement
needs a mover”, and his (incorrect !) concept can be expressed as F = mv,
where v is the velocity [21].

Between the 17th and 19th centuries numerous famous scientists, starting
with René Descartes (1596–1650), basically established modern mathematics,

8 Isaac Newton was born on 25 December 1612, in the Julian Calendar which was
still used in England. (In the Gregorian calendar the date was 3 January 1613).
He is the most influential of all scientists. He made many major advances in
mathematics (including differential and integral calculus), and he applied mathe-
matics with immense success to dynamics, astronomy, optics and other branches
of science.

9 Newton’s statement of the Second Law of Motion is: “The change of motion
is proportional to the motive power impressed; and is made in the direction of
the right line in which that force is impressed” (the Motte–Cajori translation).
Newton’s applications of that law shew that “change of motion” means “rate of
change of momentum”, and it holds for bodies of varying mass.



8 R. Klette and G. Tee

including geometrical volumes, analytical geometry, and geometrical algebra.
Today’s human motion studies benefit from those developments.

We briefly mention Luigi Galvani (1737–1798) and his discovery (1780) of
“animal electricity”, which was correctly interpreted (in 1800) by Alessandro
Volta (1748–1827) as muscles contracting in response to electric current.
Hermann von Helmholtz (1821–1894) invented the myograph in 1852, and
he used it to study the propagation of electricity along nerves. He was greatly
surprised to find that, in a frog nerve, the electrical signal travelled only 27
metres per second [45].

The concepts of energy and of thermodynamics were largely developed
between 1820 and 1860 by Nicolas Léonard Sadi Carnot (1796–1832), Rudolf
Julius Emmanuel Clausius (1822–1888), William Thomson (later Baron
Kelvin, 1824–1907), Herman von Helmholtz (1821–1894), and James Clerk
Maxwell (1831–1879).

The mathematician Charles Babbage (1791–1871) had, by 1837, invented
all of the basic ideas about computers (and many advanced ideas about them).
He attempted to construct various mechanical computers, but he did not
succeed in completing any working computer. (In 1991, his Difference Engine
No. 2 was completed, following his plans – and it worked.)

Quantitative physiology was founded in 1866 by the chemist Edward
Frankland (1825–1899), who demonstrated experimentally that work done
by a human matched the energy of the food consumed [11].

In the 19th century, a variety of toys were made which produced moving
pictures. In the 1830s, several inventors developed the Phenakistoscope, a disk
with several radial slots and successive pictures painted between the slots.
When the disk was spun with the pictures on the side facing a mirror, a
viewer looking towards the mirror from the blank side of the disk would get
momentary views (through the slots) of the pictures in cyclic motion. In the
1860s, several inventors improved that to develop the Zoetrope, a rotating
drum with slits parallel to the axis. A strip of paper could be fitted inside the
cylinder, with slits in the paper fitted to the slits in the cylinder, and with
successive pictures printed on the paper between the slits [40, pp.16–20].

A major contribution was the work by brothers Ernst Heinrich Weber
(1795–1878), Wilhelm Eduard Weber (1804–1891), and Eduard Friedrich

Fig. 1.5. From left to right: Eduard Friedrich Weber, Ernst Heinrich Weber, and
Wilhelm Eduard Weber. Right: calculated picture from [46].



1 Understanding Human Motion: A Historic Review 9

Weber (1806–1871); all three collaborated in their research on physics, human
anatomy and locomotion. The latter two published the book [46]. Wilhelm
Eduard Weber is famous for the invention of the first electromagnetic tele-
graph in 1833, jointly with Carl Friedrich Gauss (1777–1855).

[46] contains “calculated pictures”, see right of Figure 1.5, pioneering to-
day’s computer graphics. Subsequent phases of human walking are calculated
using differential equations, and visualized by drawings using perspective pro-
jection.

[46] analyzed human gait and provided a theory of locomotion, including
the prediction of a “walking machine” (with two, four, or more legs, depending
on terrain difficulty), moved by steam. In fact, movement control of today’s
multi-legged robots depends on solutions of PDEs (partial differential equa-
tions). The Weber brothers were the first who studied the path of the center
of mass during movement.

The mathematician Pafnyutii L’vovich Chebyshev (1821–1894) advanced
greatly the theory of mechanical linkages. His inventions include a wheelchair
driven by crank handles, and a model of a 4-leg walking machine. Such “walk-
ing machines” might have inspired Mrs. Edmund Craster (died 1874) to write
her poem The Centipede:

The Centipede was happy quite,
Until the Toad in fun
Said ‘Pray, which leg goes after which?’
And worked her mind to such a pitch
She lay, distracted, in the ditch
Consid’ring how to run.

1.6 Chronophotography

The French astronomer Pierre Janssen (1824–1907) used on 8 December 1874
a multi-exposure camera (of his own invention) for recording the transit of
Venus across the Sun. His “clockwork ‘revolver’ took forty-eight exposures in
seventy-two seconds on a daguerreotype disc. Janssen’s work in turn greatly

Fig. 1.6. Left: E.-J. Marey. Right: an 1882 photo by Marey.
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Fig. 1.7. Left: a runner with instruments to record his movements, including a shoe
to record duration and phases of ground contact. Right: a trotting horse with instru-
ments to record the horse’s leg locomotion, including an instrument for measuring
the ground pressure of a hoof [31].

influenced the chronophotographic experiments” [47] of the French scientist
Etienne-Jules Marey (1830–1904); see left of Figure 1.6 for a photo of himself.
He was interested in locomotion of animals or humans. In his book [31] he
reported about motion studies, where data had been collected by various
instruments; see Figure 1.7.

His interests in locomotion studies led him later to the design of special
cameras allowing a recording of several phases of motion in the same photo.
Figure 1.6, right, shows a flying pelican recorded by him around 1882. Marey
reported in a 1890 book about locomotion of birds, also using his photographs
for illustration and analysis. Later he also used movies (with up to 60 pps in
good quality), which was influential pioneering work for the emerging field
of cinematography. Figure 1.8 illustrates his work reported in the book [33].
Also see [10] (short-listed in 1994 for Britain’s Kraszna-Krausz award).

The British-born Eadweard Muybridge (1830–1904) became a renowned
photographer after he emigrated to the USA. Inspired by Marey’s recording
of motion [29], and by a disputed claim that a galloping horse may have all

Fig. 1.8. Left: a man in a black dress; limbs are marked by white lines. Right, top:
a chronophotograph of a striding man dressed partially in white, and partially in
black. Right, bottom: white lines in a chronophotograph of a runner [33].
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Fig. 1.9. Woman walking downstairs (Muybridge, late 19th century).

four hooves off the ground, in 1878 he set up a series of 12 cameras10 for
recording fast motion alongside a barn, sited on what is now the Stanford
University campus. His rapid sequence of photographs of a galloping horse
did shew all four hooves off the ground for part of the time [40, p.21] [36]. He
invented a machine for displaying the recorded series of images, pioneering
motion pictures this way. He applied his technique to movement studies. The
human subjects were typically photographed nude or nearly nude, for different
categories of locomotion; see Figure 1.9.

Fig. 1.10. Lilienthal’s flight, Maihöhe 1893, photographed by O. Anschütz (Otto
Lilienthal Museum, Germany).

Muybridge’s motion studies, based on multiple images, included walking
downstairs, boxing, walking of children, and so forth. They are often cited
in the context of the beginning of biomechanics, and they were definitely
very influential for the beginning of cinematography at the end of the 19th
century. Movies were shot in several countries, shortly after his successful
demonstrations of “moving pictures”.

A third famous representative of chronophotography was the German in-
ventor Ottomar Anschütz (1846–1907) whose 1884 photographs of gliding

10 In 1879, he increased that to 24 cameras.
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Fig. 1.11. From left to right: detail of one of Muybridge’s photographic plates, Pablo
Picasso’s Les Demoiselles d’Avignon (1907), Marcel Duchamp’s Nude Descending a
Staircase, and Hananiah Harari’s Nude Descending a Staircase.

flights of storks inspired Otto Lilienthal’s design of experimental gliders. One
of Anschütz’s inventions is a 1/1000th of a second shutter. Earlier than Muy-
bridge, he invented in 1890 a machine (called Tachyscop) for the first moving
pictures. It was similar to a Zoetrope but used photographs lined up in a
cylinder, which could be seen through a slot (e.g., a walking man, a walking
woman, the gallop of a horse, and a flying crane). Anschütz also took photos
of the first flights of Lilienthal in 1893 and 1894; see Figure 1.10.

Less known, but also a pioneer of the early days of human motion captur-
ing, was Albert Londe (1858–1917) [47]. Londe constructed a camera, fitted
with (at the beginning of his studies) 9 lenses arranged in a circle, and used
this camera to study the movements of patients (at La Hôpital de la Salpêtrière
in Paris) during epileptic fits.

The work by Marey and Muybridge was also of great influence in the arts
[15]. Figure 1.11 shows on the left a detail of one of Muybridge’s plates, show-
ing a female with a handkerchief. Duchamp points to Marey for origins of his
Nude Descending a Staircase, and Picasso points to one of Muybridge plates,
entitled Dropping and Lifting of a Handkerchief (1885), for origins of his Les
Demoiselles d’Avignon. The English painter Francis Bacon (1909–1992) even
compared the importance of Muybridge for his artistic development with that
of Michelangelo [15].

1.7 Human Motion Studies in Biomechanics

In the latter half of the 19th century, Christian Wilhelm Braune (1831–1892)
and Otto Fischer (1861–1917) started with experimental studies of human gait
(e.g., for determining the center of mass), which resulted in the development
of prosthesis.

In the 20th century, biomechanics developed into a discipline of science, es-
tablishing its own research programs. The French reformer (and ‘work physiol-
ogist’) Jules Amar (1879–1935) published in 1914 the very influential book [2],
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Fig. 1.12. Left: A. V. Hill. Right: Testing the acceleration of sprinters by Hill at
Cornell University, Ithaca, NY [23]. “The large coils of wire were used to detect a
magnet worn by the runner as he sprinted past them. Velocity and acceleration were
calculated by knowing the distance between the wire coils.” [6].

which soon after defined the standards for human engineering in Europe and
the United States. The technology of cinematographic analysis of sprint run-
ning allowed a new quality in research (note: the flicker-fusion rate of the
human eye is only about 12 Hz); see, for example, papers [17, 18] by Wallace
O. Fenn (1893–1971), who became the president of the American Physiologi-
cal Association. Graduate programs in biomechanics developed in the United
States in the 1940s. Starting with the 1950s, biomechanics became a world-
wide discipline for physical educators, especially in the context of sports.
Helmholtz’s myograph was developed into the electronic electromyograph, for
measuring the electric activity of muscles.

The book [7] by Nicholas Bernstein (1896–1966) pioneered the areas of
motor control and coordination. He studied the spatial conception of the
degrees-of-freedom problem in the human motor system for walking, running
or jumping.

Archibald Vivian Hill (1886–1977) was convinced by F. G. Hopkins (Nobel
Prize in Physiology or Medicine, 1929) to “pursue advanced studies in physiol-
ogy rather than mathematics” [42]. Hill investigated the efficiency and energy
cost in human movement (see, e.g., [24]). Based on his solid background in
mathematics, he developed mathematic “models describing heat production
in muscle, and applied kinetic analysis to explain the time course of oxygen
uptake during both exercise and recovery” [42]. His research initiated bio-
physics [25]. Hill shared the 1922 Nobel Prize in Physiology or Medicine with
the German chemist Otto Meyerhof. Hill was honored for his discoveries about
the chemical and mechanical events in muscle contraction [22].

Research in computerized gait analysis is today widely supported by
marker-based pose tracking systems (see Figure 1.13), which have their ori-
gins in the work by G. Johannsson [26] (see Section 1.9). Basically, the camera
systems used are fast (e.g., 300 Hz or more), but recorded images are normally
restricted to binary information, showing positions of markers only. Computer
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Fig. 1.13. Gait laboratory of The University of Auckland (in 2000). Left: walking
subject with markers. Middle: walking area (top) and one of the fast cameras (bot-
tom). Right: generated animated 3D stick figure (to) and camera calibration unit
(bottom).

vision already helped to create 3D body models for gait analysis (e.g., by us-
ing whole-body scanners, based on the principle of structured lighting, or
by applying photometric stereo [4]). The increasing availability of high-speed
cameras supports the development of marker-less motion tracking systems
(e.g., [39]), overcoming the apparent restrictions of marker-based systems.

For a review on past and more recent work in biomechanics, see [43].
Recent textbooks are, for example, [49, 50], or other book publications by
Human Kinetics. [35] reviews markerless motion capture for biomechanical
applications; see also Chapter 15 in this book. Chapter 16 is about motion
variations between clinical gait and daily live, and Chapter 17 on studies to
support the optimization of human motion.

1.8 Human Motion Studies in Computer Graphics

Computer animation of human walking is a major area of interest in com-
puter graphics. Compared to biomechanics, the discipline emerged “recently”,
namely about 50 years ago with the advent of the computer.11

Basically, a computer graphics process starts with defining the models
used. Figure 1.14 illustrates three options. Tracking markers (see previous

11 The first working computers were built during World War II (with the first
COLOSSUS operating at Bletchley Park in December 1943), and now comput-
ers have become essential tools in most branches of science, including studies of
human motion.
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Fig. 1.14. Three options for modelling a leg: stick figure (left), simple geometrical
parts (middle), or a (generic) model of the shape of a human leg.

section) allows to generate a stick figure, which may be based on general
assumptions into a volumetric model (e.g., defined by cylindric parts, or a
generic body model of a human). Then the ways are specified how to present
those models, for example rendered with respect to given surface textures
and light sources in form of an animation, within a synthesized scene, or
just against a monochromatic background (see Figure 1.15 for an example of
recent graduate student projects; for more complex animations see commercial
products of the movie or game industries, which are major forces pushing for
progress in animated human motion).

Fig. 1.15. Frames of various animations of human movements [20]. The clip illus-
trated on the lower left allows to compare synthetic and real human motion.
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Static models of moving humans, or dynamic 3D poses, are generated
by applying various means. For static whole–body modelling, this can be
achieved, efficiently and accurately, by structured lighting or encoded light
(e.g., Gray codes) for static bodies (see, e.g., [28]). LEDs, marker-based multi-
camera systems (see Figure 1.13), or silhouette-based generic 3D model track-
ing (e.g., [39]) are options for capturing data about movements of a human.

For recent books, addressing human motion studies in computer graphics
(and in computer vision), see [19]. Sun and Metaxas showed in [44] how gait,
captured on even ground, can be used to generate realistic motion on uneven
terrain. Chapter 22 discusses realistic modelling of human motion. Chapter 24
is about the importance of human motion analysis for character animation.
Chapter 23 provides deformable models for a possible option to represent
motion.

1.9 Human Motion Studies in Computer Vision

Computer vision exists for about the same time as computer graphics. In-
stead of only capturing image sequences, to be analyzed by a human ob-
server, now those sequences are digitized, and computer programs are used
for an automated analysis of the sequence. As illustrated by Figure 1.8, Marey
already used simplifications such as white skeletal curves on a moving human.
Braune and Fischer [9] attached light rods to an actor’s limbs, which then
became known as Moving Light Displays (LEDs). Gunnar Johannsson [26,27]
pioneered studies on the use of image sequences for a programmed human
motion analysis, using LEDs as input (see Figure 1.16). These very limited
inputs of information allow an interesting analysis, for example with respect
of identifying a particular person.

Motion analysis in computer vision has to solve two main tasks, detecting
correspondences between subsequent images, and tracking of an object within
a sequence of images. This can be based on different methodologies, such as

Fig. 1.16. A sequence of 15 LED frames, extracted from an animation on [30].
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tracking 2D features at a local (e.g., corners) or global level (e.g., silhouettes,
after a “proper” segmentation of images), or tracking based on projecting a
generic 3D model (of a human) into the scene (see Figure 1.17).

For reviews on human motion studies in computer vision, see [1, 34]. The
use of LEDs in computer vision is reviewed in [14]. For a recent collection
of papers, also covering human motion in computer vision, see [37]. Human
motion studies in computer vision have been already a subject of an inter-
national workshop [48]. As an example of a recent “landmark”, we cite [51],
discussing in depth the recognition of people based on gait.

This book contains a basic Chapter 7 on various models for human motion
and Chapter 18 which reviews human motion analysis. The understanding of
human motion from video, and the tracking of moving people, is the sub-
ject in Chapters 11, 5, 6, 20, 8. Special issues when tracking clothed people
are discussed in Chapter 12. The recognition of human actions is reported in
Chapter 3. Chapters 9, 14 are about human motion studies in the context of
computer–human interaction. The Chapters 21, 13, 10, 2 provide information
about theoretical areas which have proved to be of use for human motion
modelling or understanding (Geometrical algebra, simulated annealing, mani-
fold learning). Finally, Chapter 19 discusses the application of human motion
studies in a particular application (dummy movements and crash test analy-
sis). The application of motion analysis for cardiac motion studies is reported
in Chapter 4.

Fig. 1.17. Human poses are tracked using a generic 3D model of the upper human
body; the figure shows the backprojection of the recorded 3D motion into the original
4-camera image sequence, also demonstrating model movements of occluded body
parts [39].
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1.10 Conclusions

This review certainly proves that studies on human motion were and are in-
terdisciplinary (from the beginning, which was about 2000 years ago). This
book aims at contributing to deeper interactions between biomechanics, com-
puter graphics, and computer vision (already existing at advanced levels in
some institutes, see, e.g., [12, 38]). Certainly, further areas are of relevance,
with biophysics or mathematics as major contributors, or medicine (e.g., re-
habilitation technology), robotics (e.g., studies on passive dynamic walking),
or sports sciences (e.g., modelling of athlete motion) as important areas of
application. However, the book was planned for the time being to remain fo-
cused on those three areas, but future development of human motion studies
will certainly also benefit from interactions with neurology (e.g., neural con-
trol mechanisms for motion), cognitive sciences (e.g., selective attention to
understand motion), health exercises (i.e., not just focusing on sports, but
also on recreation), and so forth.

Basic concepts for biomechanical studies of human motion were already
developed by 1687, when Isaac Newton published his three laws of motion.
Basic mathematic tools for human motion studies were already provided in
mathematics by the end of the 19th century. The start of photography in the
19th century led to the documentation of human motion, starting at the end
of the 19th century. The advent of the computer, and of digital technology in
general in the latter half of the 20th century finally provided the tools for an-
alyzing human motion based on digitized image sequences, and for animating
or studying human motion using extensive calculations and detailed models
of human locomotion.

There is a general demand in more in-depth studies on locomotion (e.g.,
also on gait disorders). A future major qualitative advance in the area of
human motion studies is expected with the widespread use of high-speed, high-
resolution, and light-sensitive cameras for recording and analyzing human
motion, and at the time when human motion analysis becomes an integrative
approach in medical treatments.

There is furthermore a continuous strong progress in computer vision and
graphics. Computer graphics, with animations and game applications, are a
major force to simplify motion understanding and capturing into integrated
vision and graphics systems. Recent applications are already manifold, also
including identifications of persons (i.e., by gait patterns), motion advice (e.g.,
for learning golf), documenting particular performances (e.g., 3D models of
dancing), or multimedia presentations (e.g., mapping of recorded motion into a
prepared image sequence). Challenging tasks are related to markerless motion
(and shape) capture, also outdoors, with partial occlusions, general clothing,
real-time (even for highly dynamic motion patterns), and also allowing ex-
treme environments, starting with, for example, those for swimming or rock
climbing.
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Appendix: A Few Definitions

Biomechanics studies living organisms at different levels – from molecular
to macroscopic level – as mechanical systems (i.e., internal and external forces
acting on the moving body, and effects produced by these forces).

Computer Graphics generates digital pictures or animations for visual-
izing real or synthetic scenes, objects, or processes.

Computer Vision analyzes 3D scenes, objects, or processes based on
captured images, with the purpose of modelling or understanding the pictured
scenes, objects, or processes.

Chronophotography (“pictures of time”) is applied science (used mainly
in the second half of the 19th century), using photography for studies of
changes in time.

Dynamics is concerned with the effects of forces on the motion of
objects

Locomotion is (in biology) an autonomous motion of an individual (hu-
man, bird, fish, and so forth), considered to be defined by a sequence of pat-
terns composed by anatomic parts. Locomotion patterns can be classified into
categories such as walking, jumping, swimming, and so forth.

Kinematics is a subfield of biomechanics studying movements with
respect to geometrical aspects, without references to its physic causes (i.e.,
masses or forces).

Kinesiology denoted (in the United States; this name was first applied
to the study of muscles and movements in the first decade of the 20th century
by Baron Nils Posse and William Skarstrom) the use of mathematical or
mechanical principles for studying human motion (note: basically identical to
biomechanics, originally the preferred name for this field in Europe, but now
widely accepted worldwide).

Kinetics studies what causes a body to move the way it does, by an-
alyzing the actions of forces contributing to the motion of masses. Subfields
are statics and dynamics.

Prosthesis is a field in medicine aimed at artificial replacements of body
parts.

Statics is concerned with the analysis of loads (force, moment, torque)
on physical systems in static equilibrium (i.e., whose relative positions do not
vary over time; for example in inertial motion).
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Summary. The human body is an articulated object with a high number of degrees
of freedom. Despite the high dimensionality of the configuration space, many human
motion activities lie intrinsically on low-dimensional manifolds. Although the intrin-
sic body configuration manifolds might be very low in dimensionality, the resulting
appearance manifolds are challenging to model given various aspects that affect the
appearance such as the shape and appearance of the person performing the motion,
or variation in the viewpoint, or illumination. Our objective is to learn representa-
tions for the shape and the appearance of moving (dynamic) objects that support
tasks such as synthesis, pose recovery, reconstruction, and tracking. We studied var-
ious approaches for representing global deformation manifolds that preserve their
geometric structure. Given such representations, we can learn generative models
for dynamic shape and appearance. We also address the fundamental question of
separating style and content on nonlinear manifolds representing dynamic objects.
We learn factorized generative models that explicitly decompose the intrinsic body
configuration (content) as a function of time from the appearance/shape (style fac-
tors) of the person performing the action as time-invariant parameters. We show
results on pose recovery, body tracking, gait recognition, as well as facial expression
tracking and recognition.

2.1 Introduction

The human body is an articulated object with high degrees of freedom. The
human body moves through the three-dimensional world and such motion is
constrained by body dynamics and projected by lenses to form the visual
input we capture through our cameras. Therefore, the changes (deforma-
tion) in appearance (texture, contours, edges, etc.) in the visual input (im-
age sequences) corresponding to performing certain actions, such as facial
expression or gesturing, are well constrained by the 3D body structure and
the dynamics of the action being performed. Such constraints are explicitly
exploited to recover the body configuration and motion in model-based ap-
proaches [1–8] through explicitly specifying articulated models of the body
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parts, joint angles and their kinematics (or dynamics) as well as models for
camera geometry and image formation. Recovering body configuration in these
approaches involves searching high-dimensional spaces (body configuration
and geometric transformation) which is typically formulated deterministically
as a nonlinear optimization problem, e.g. [5,9], or probabilistically as a max-
imum likelihood problem, e.g. [8]. Chapter 13 shows an example of a sto-
chastic global optimization approach for recovering body configurations. Such
approaches achieve significant success when the search problem is constrained
as in tracking context. However, initialization remains the most challenging
problem, which can be partially alleviated by sampling approaches. The di-
mensionality of the initialization problem increases as we incorporate models
for variations between individuals in physical body style, models for varia-
tions in action style, or models for clothing, etc. Partial recovery of body
configuration can also be achieved through intermediate view-based represen-
tations (models) that may or may not be tied to specific body parts [10–19].
In such case constancy of the local appearance of individual body parts is
exploited. Alternative paradigms are appearance-based and motion-based ap-
proaches where the focus is to track and recognize human activities without
full recovery of the 3D body pose [20–28].

Recently, there have been research for recovering body posture directly
from the visual input by posing the problem as a learning problem through
searching a pre-labeled database of body posture [29–31] or through learning
regression models from input to output [32–38]. All these approaches pose the
problem as a machine learning problem where the objective is to learn input–
output mapping from input–output pairs of training data. Such approaches
have great potential for solving the initialization problem for model-based
vision. However, these approaches are challenged by the existence of wide
range of variability in the input domain.

Role of Manifold:
Despite the high-dimensionality of the configuration space, many human mo-
tion activities lie intrinsically on low-dimensional manifolds. This is true if we
consider the body kinematics, as well as if we consider the observed motion
through image sequences. Let us consider the observed motion. The shape
of the human silhouette walking or performing a gesture is an example of
a dynamic shape where the shape deforms over time based on the action
performed. These deformations are constrained by the physical body con-
straints and the temporal constraints posed by the action being performed.
If we consider these silhouettes through the walking cycle as points in a
high-dimensional visual input space, then, given the spatial and the temporal
constraints, it is expected that these points will lay on a low-dimensional man-
ifold. Intuitively, the gait is a one-dimensional manifold which is embedded in
a high-dimensional visual space. This was also shown in [39]. Such manifold
can be twisted, self-intersect in such high-dimensional visual space.
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Similarly, the appearance of a face performing facial expressions is an
example of a dynamic appearance that lies on a low-dimensional manifold in
the visual input space. In fact if we consider certain classes of motion such
as gait, or a single gesture, or a single facial expressions and if we factor out
all other sources of variability, each of such motions lies on a one-dimensional
manifolds, i.e., a trajectory in the visual input space. Such manifolds are
nonlinear and non-Euclidean.

Therefore, researchers have tried to exploit the manifold structure as a con-
straint in tasks, such as tracking and activity recognition, in an implicit way.
Learning nonlinear deformation manifolds is typically performed in the visual
input space or through intermediate representations. For example, exemplar-
based approaches such as [40] implicitly model nonlinear manifolds through
points (exemplars) along the manifold. Such exemplars are represented in the
visual input space. HMM models provide a probabilistic piecewise linear ap-
proximation which can be used to learn nonlinear manifolds as in [41] and
in [33].

Although the intrinsic body configuration manifolds might be very low in
dimensionality, the resulting appearance manifolds are challenging to model
given various aspects that affect the appearance such as the shape and ap-
pearance of the person performing the motion, or variation in the viewpoint,
or illumination. Such variability makes the task of learning visual manifold
very challenging because we are dealing with data points that lies on multi-
ple manifolds on the same time: body configuration manifold, view manifold,
shape manifold, illumination manifold, etc.

Linear, Bilinear and Multi-linear Models:
Can we decompose the configuration using linear models? Linear models, such
as PCA [42], have been widely used in appearance modelling to discover sub-
spaces for variations. For example, PCA has been used extensively for face
recognition such as in [43–46] and to model the appearance and view mani-
folds for 3D object recognition as in [47]. Such subspace analysis can be further
extended to decompose multiple orthogonal factors using bilinear models and
multi-linear tensor analysis [48, 49]. The pioneering work of Tenenbaum and
Freeman [48] formulated the separation of style and content using a bilinear
model framework [50]. In that work, a bilinear model was used to decom-
pose face appearance into two factors: head pose and different people as style
and content interchangeably. They presented a computational framework for
model fitting using SVD. Bilinear models have been used earlier in other
contexts [50, 51]. In [49] multi-linear tensor analysis was used to decompose
face images into orthogonal factors controlling the appearance of the face,
including geometry (people), expressions, head pose, and illumination. They
employed high order singular value decomposition (HOSVD) [52] to fit multi-
linear models. Tensor representation of image data was used in [53] for video
compression and in [54,55] for motion analysis and synthesis. N-mode analysis
of higher-order tensors was originally proposed and developed in [50, 56, 57]
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Fig. 2.1. Twenty sample frames from a walking cycle from a side view. Each row
represents half a cycle. Notice the similarity between the two half cycles. The right
part shows the similarity matrix: each row and column corresponds to one sample.
Darker means closer distance and brighter means larger distances. The two dark
lines parallel to the diagonal show the similarity between the two half cycles.

and others. Another extension is algebraic solution for subspace clustering
through generalized-PCA [58,59]

In our case, the object is dynamic. So, can we decompose the configura-
tion from the shape (appearance) using linear embedding? For our case, the
shape temporally undergoes deformations and self-occlusion which result in
the points lying on a nonlinear, twisted manifold. This can be illustrated if we
consider the walking cycle in Figure 2.1. The two shapes in the middle of the
two rows correspond to the farthest points in the walking cycle kinematically
and are supposedly the farthest points on the manifold in terms of the geo-
desic distance along the manifold. In the Euclidean visual input space, these
two points are very close to each other, as can be noticed from the distance
plot on the right of Figure 2.1. Because of such nonlinearity, PCA will not
be able to discover the underlying manifold. Simply, linear models will not be
able to interpolate intermediate poses. For the same reason, multidimensional
scaling (MDS) [60] also fails to recover such manifold.

Nonlinear Dimensionality Reduction and Decomposition
of Orthogonal Factors:
Recently some promising frameworks for nonlinear dimensionality reduction
have been introduced, e.g. [61–67]. Such approaches can achieve embedding
of nonlinear manifolds through changing the metric from the original space
to the embedding space based on local structure of the manifold. While
there are various such approaches, they mainly fall into two categories:
Spectral-embedding approaches and Statistical approaches. Spectral embed-
ding includes approaches such as isometric feature mapping (Isomap) [61],
Local linear embedding (LLE) [62], Laplacian eigenmaps [63], and Manifold
Charting [64]. Spectral-embedding approaches, in general, construct an affin-
ity matrix between data points using data dependent kernels, which reflect
local manifold structure. Embedding is then achieved through solving an
eigen-value problem on such matrix. It was shown in [68, 69] that these
approaches are all instances of kernel-based learning, in particular kernel
principle component analysis KPCA [70]. In [71] an approach for embedding
out-of-sample points to complement such approaches. Along the same line,



2 Manifold Learning in Human Motion Analysis 29

our work [72, 73] introduced a general framework for mapping between input
and embedding spaces.

All these nonlinear embedding frameworks were shown to be able to embed
nonlinear manifolds into low-dimensional Euclidean spaces for toy examples
as well as for real images. Such approaches are able to embed image ensem-
bles nonlinearly into low-dimensional spaces where various orthogonal percep-
tual aspects can be shown to correspond to certain directions or clusters in
the embedding spaces. In this sense, such nonlinear dimensionality reduction
frameworks present an alternative solution to the decomposition problems.
However, the application of such approaches are limited to embedding of a
single manifold.

Biological Motivation:
While the role of manifold representations is still unclear in perception, it is
clear that images of the same objects lie on a low-dimensional manifold in the
visual space defined by the retinal array. On the other hand, neurophysiologists
have found that neural population activity firing is typically a function of a
small number of variables, which implies that population activity also lie on
low-dimensional manifolds [74].

2.2 Learning a Simple Motion Manifold

2.2.1 Case Study: The Gait Manifold

In order to achieve a low-dimensional embedding of the gait manifold, non-
linear dimensionality reduction techniques such as LLE [62], Isomap [61],
and others can be used. Most these techniques result in qualitatively simi-
lar manifold embedding. As a result of nonlinear dimensionality reduction we
can reach an embedding of the gait manifold in a low-dimension Euclidean
space [72]. Figure 2.2 illustrates the resulting embedded manifold for a side
view of the walker.1 Figure 2.3 illustrates the embedded manifolds for five
different viewpoints of the walker. For a given view-point, the walking cycle
evolves along a closed curve in the embedded space, i.e., only one degree of
freedom controls the walking cycle which corresponds to the constrained body
pose as a function of the time. Such conclusion is conforming with the intuition
that the gait manifold is one dimensional.

One important question is what is the least dimensional embedding space
we can use to embed the walking cycle in a way that discriminate different

1 The data used are from the CMU Mobo gait data set which contains 25 people
from six different viewpoints. We used data sets of walking people from mul-
tiple views. Each data set consists of 300 frames and each containing about 8
to 11 walking cycles of the same person from a certain viewpoints. The walkers
were using treadmill which might results in different dynamics from the natural
walking.
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Fig. 2.2. Embedded gait manifold for a side view of the walker. Left: sample frames
from a walking cycle along the manifold with the frame numbers shown to indicate
the order. Ten walking cycles are shown. Right: three different views of the manifold.

Fig. 2.3. Embedded manifolds for 5 different views of the walkers. Frontal view
manifold is the right most one and back view manifold is the leftmost one. We
choose the view of the manifold that best illustrates its shape in the 3D embedding
space.

poses through the whole cycle. The answer depends on the viewpoint. The
manifold twists in the embedding space given the different viewpoints which
impose different self-occlusions. The least twisted manifold is the manifold for
the back view as this is the least self-occluding view (left most manifold in
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Figure 2.3. In this case the manifold can be embedded in a two-dimensional
space. For other views the curve starts to twist to be a three-dimensional space
curve. This is primarily because of the similarity imposed by the viewpoint
which attracts far away points on the manifold closer. The ultimate twist
happens in the side view manifold where the curve twists to be a figure eight
shape where each cycle of the eight (half eight) lies in a different plane. Each
half of the “eight” figure corresponds to half a walking cycle. The cross point
represents the body pose where it is totally ambiguous from the side view
to determine from the shape of the contour which leg is in front as can be
noticed in Figure 2.2. Therefore, in a side view, three-dimensional embedding
space is the least we can use to discriminate different poses. Embedding a
side view cycle in a two-dimensional embedding space results in an embedding
similar to that shown in top left of Figure 2.2 where the two half cycles lies
over each other. Different people are expected to have different manifolds.
However, such manifolds are all topologically equivalent. This can be noticed
in Figure 2.8-c. Such property will be exploited later in the chapter to learn
unified representations from multiple manifolds.

2.2.2 Learning the Visual Manifold: Generative Model

Given that we can achieve a low-dimensional embedding of the visual mani-
fold of dynamic shape data, such as the gait data shown above, the question
is how to use this embedding to learn representations of moving (dynamic)
objects that supports tasks such as synthesis, pose recovery, reconstruction
and tracking. In the simplest form, assuming no other source of variability
besides the intrinsic motion, we can think of a view-based generative model
of the form

yt = Tαγ(xt; a) (2.1)

where the shape (appearance), yt, at time t is an instance driven from a gen-
erative model where the function γ is a mapping function that maps body
configuration xt at time t into the image space. The body configuration xt is
constrained to the explicitly modeled motion manifold. i.e., the mapping func-
tion γ maps from a representation of the body configuration space into the
image space given mapping parameters a that are independent from the con-
figuration. Tα represents a global geometric transformation on the appearance
instance.

The manifold in the embedding space can be modeled explicitly in a func-
tion form or implicitly by points along the embedded manifold (embedded
exemplars). The embedded manifold can be also modeled probabilistically
using Hidden Markov Models and EM. Clearly, learning manifold represen-
tations in a low-dimensional embedding space is advantageous over learning
them in the visual input space. However, our emphasize is on learning the
mapping between the embedding space and the visual input space.

Since the objective is to recover body configuration from the input, it
might be obvious that we need to learn mapping from the input space to
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the embedding space, i.e., mapping from R
d to R

e. However, learning such
mapping is not feasible since the visual input is very high-dimensional so
learning such mapping will require large number of samples in order to be
able to interpolate. Instead, we learn the mapping from the embedding space
to the visual input space, i.e., in a generative manner, with a mechanism to
directly solve for the inverse mapping. Another fundamental reason to learn
the mapping in this direction is the inherent ambiguity in 2D data. Therefore,
mapping from visual data to the manifold representation is not necessarily a
function. While learning a mapping from the manifold to the visual data is a
function.

It is well know that learning a smooth mapping from examples is an ill-
posed problem unless the mapping is constrained since the mapping will be
undefined in other parts of the space [75]. We argue that, explicit modelling
of the visual manifold represents a way to constrain any mapping between
the visual input and any other space. Nonlinear embedding of the manifold,
as was discussed in the previous section, represents a general framework to
achieve this task. Constraining the mapping to the manifold is essential if we
consider the existence of outliers (spatial and/or temporal) in the input space.
This also facilitates learning mappings that can be used for interpolation
between poses as we shall show. In what follows we explain our framework to
recover the pose. In order to learn such nonlinear mapping, we use a Radial
basis function (RBF) interpolation framework. The use of RBF for image
synthesis and analysis has been pioneered by [75, 76] where RBF networks
were used to learn nonlinear mappings between image space and a supervised
parameter space. In our work we use the RBF interpolation framework in a
novel way to learn mapping from unsupervised learned parameter space to the
input space. Radial basis function interpolation provides a framework for both
implicitly modelling the embedded manifold as well as learning a mapping
between the embedding space and the visual input space. In this case, the
manifold is represented in the embedding space implicitly by selecting a set of
representative points along the manifold as the centers for the basis functions.

Let the set of representative input instances (shape or appearance) be Y =
{yi ∈ R

d i = 1, · · · , N} and let their corresponding points in the embedding
space be X = {xi ∈ R

e, i = 1, · · · , N} where e is the dimensionality of the
embedding space (e.g., e = 3 in the case of gait). We can solve for multiple
interpolants fk : R

e → R where k is k-th dimension (pixel) in the input space
and fk is a radial basis function interpolant, i.e., we learn nonlinear mappings
from the embedding space to each individual pixel in the input space. Of
particular interest are functions of the form

fk(x) = pk(x) +
N∑

i=1

wk
i φ(|x− xi|), (2.2)

where φ(·) is a real-valued basic function, wi are real coefficients, |·| is the norm
on R

e (the embedding space). Typical choices for the basis function includes
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thin-plate spline (φ(u) = u2log(u)), the multiquadric (φ(u) =
√

(u2 + c2)),
Gaussian (φ(u) = e−cu2

), biharmonic (φ(u) = u) and triharmonic (φ(u) = u3)
splines. pk is a linear polynomial with coefficients ck, i.e., pk(x) = [1 x�] · ck.
This linear polynomial is essential to achieve approximate solution for the
inverse mapping as will be shown.

The whole mapping can be written in a matrix form as

f(x) = B · ψ(x), (2.3)

where B is a d×(N+e+1) dimensional matrix with the k-th row [wk
1 · · ·wk

N ckT

]
and the vector ψ(x) is [φ(|x − x1|) · · ·φ(|x − xN |) 1 x�]�. The matrix B
represents the coefficients for d different nonlinear mappings, each from a
low-dimension embedding space into real numbers.

To insure orthogonality and to make the problem well posed, the following
additional constraints are imposed

N∑
i=1

wipj(xi) = 0, j = 1, · · · ,m (2.4)

where pj ’s are the linear basis of m-degree polynomial p. Therefore the solution
for B can be obtained by directly solving the linear systems(

A P
P� 0

)
B� =

(
Y
0(e+1)×d

)
, (2.5)

where Aij = φ(|xj − xi|), i, j = 1, · · · , N , P is a matrix with i-th row
[1 x�

i ], and Y is (N × d) matrix containing the representative input images,
i.e., Y = [y1 · · · yN ]� ∈ R

d i = 1, · · · , N . Solution for B is guaranteed under
certain conditions on the basic functions used. Similarly, a mapping can be
learned using arbitrary centers in the embedding space (not necessarily at
data points) [72,75].

Given such mapping, any input is represented by a linear combination
of nonlinear functions centered in the embedding space along the manifold.
Equivalently, this can be interpreted as a form of basis images (coefficients)
that are combined nonlinearly using kernel functions centered along the em-
bedded manifold.

2.2.3 Solving for the Embedding Coordinates

Given a new input y ∈ R
d, it is required to find the corresponding embedding

coordinates x ∈ R
e by solving for the inverse mapping. There are two questions

that we might need to answer:

1. What are the coordinates of point x ∈ R
e in the embedding space cor-

ressponding to such input?
2. What is the closest point on the embedded manifold corresponding to

such input?
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In both cases we need to obtain a solution for

x∗ = argmin
x

||y −Bψ(x)|| (2.6)

where for the second question the answer is constrained to be on the embed-
ded manifold. In the cases where the manifold is only one-dimensional, (for
example in the gait case, as will be shown) only one-dimensional search is suf-
ficient to recover the manifold point closest to the input. However, we show
here how to obtain a closed-form solution for x∗.

Each input yields a set of d nonlinear equations in e unknowns (or d
nonlinear equations in one e-dimensional unknown). Therefore a solution for
x∗ can be obtained by least square solution for the over-constrained non-
linear system in 2.6. However, because of the linear polynomial part in the
interpolation function, the vector ψ(x) has a special form that facilitates a
closed-form least square linear approximation and therefore, avoid solving the
nonlinear system. This can be achieved by obtaining the pseudo-inverse of B.
Note that B has rank N since N distinctive RBF centers are used. Therefore,
the pseudo-inverse can be obtained by decomposing B using SVD such that
B = USV � and, therefore, vector ψ(x) can be recovered simply as

ψ(x) = V S̃UT y (2.7)

where S̃ is the diagonal matrix obtained by taking the inverse of the nonzero
singular values in S as the diagonal terms and setting the rest to zeros. Linear
approximation for the embedding coordinate x can be obtained by taking the
last e rows in the recovered vector ψ(x). Reconstruction can be achieved by
remapping the projected point.

2.2.4 Synthesis, Recovery and Reconstruction

Given the learned model, we can synthesize new shapes along the manifold.
Figure 2.4-c shows an example of shape synthesis and interpolation. Given
a learned generative model in the form of Equation (2.3), we can synthesize
new shapes through the walking cycle. In these examples only 10 samples were
used to embed the manifold for half a cycle on a unit circle in 2D and to learn
the model. Silhouettes at intermediate body configurations were synthesized
(at the middle point between each two centers) using the learned model. The
learned model can successfully interpolate shapes at intermediate configura-
tions (never seen in the learning) using only two-dimensional embedding. The
figure shows results for three different peoples.

Given a visual input (silhouette), and the learned model, we can recover
the intrinsic body configuration, recover the viewpoint, and reconstruct the
input and detect any spatial or temporal outliers. In other words, we can
simultaneously solve for the pose, viewpoint, and reconstruct the input. A
block diagram for recovering 3D pose and viewpoint given learned manifold
models are shown in Figure 2.4. The framework [77] is based on learning three
components as shown in Figure 2.4-a:
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Fig. 2.4. (a, b) Block diagram for the learning framework and 3D pose estimation.
(c) Shape synthesis for three different people. First, third and fifth rows: samples
used in learning. Second, fourth, sixth rows: interpolated shapes at intermediate
configurations (never seen in the learning).

1. Learning Manifold Representation: using nonlinear dimensionality
reduction we achieve an embedding of the global deformation mani-
fold that preserves the geometric structure of the manifold as described
in Section 2.2.1. Given such embedding, the following two nonlinear
mappings are learned.

2. Manifold-to-input mapping: a nonlinear mapping from the embedding
space into visual input space as described in Section 2.2.2.

3. Manifold-to-pose: a nonlinear mapping from the embedding space into the
3D body pose space.

Given an input shape, the embedding coordinate, i.e., the body configura-
tion can be recovered in closed-form as was shown in Section 2.2.3. Therefore,
the model can be used for pose recovery as well as reconstruction of noisy in-
puts. Figure 2.5 shows examples of the reconstruction given corrupted silhou-
ettes as input. In this example, the manifold representation and the mapping
were learned from one person data and tested on other people data. Given
a corrupted input, after solving for the global geometric transformation, the
input is projected to the embedding space using the closed-form inverse map-
ping approximation in Section 2.2.3. The nearest embedded manifold point
represents the intrinsic body configuration. A reconstruction of the input can
be achieved by projecting back to the input space using the direct mapping
in Equation (2.3). As can be noticed from the figure, the reconstructed sil-
houettes preserve the correct body pose in each case which shows that solving
for the inverse mapping yields correct points on the manifold. Notice that no
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Fig. 2.5. Examples of pose-preserving reconstruction results. Six noisy and cor-
rupted silhouettes and their reconstructions next to them.

Fig. 2.6. 3D reconstruction for 3 people from different views: (top to bottom):
person 70 views 1,2, person 86 views 1 and person 76 view 4.

mapping is learned from the input space to the embedded space. Figure 2.6
shows examples of 3D pose recovery obtained in closed-form for different peo-
ple from different view. The training has been done using only one subject
data from five viewpoints. All the results in Figure 2.6 are for subjects not
used in the training. This shows that the model generalized very well.

2.3 Adding More Variability: Factoring out the Style

The generative model introduced in Equation (2.1) generates the visual input
as a function of a latent variable representing body configuration constrained
to a motion manifold. Obviously body configuration is not the only factor con-
trolling the visual appearance of humans in images. Any input image is a func-
tion of many aspects such as person body structure, appearance, viewpoint,
illumination, etc. Therefore, it is obvious that the visual manifolds of different
people doing the same activity will be different. So, how to handle all these
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Fig. 2.7. Style and content factors: Content: gait motion or facial expression. Style:
different silhouette shapes or face appearance.

variabilities. Let us assume the simple case first, a single viewpoint and we
deal with human silhouettes so we do not have any variability due to illumi-
nation or appearance. Let the only source of variability be variation in people
silhouette shapes. The problem now is how to extend the generative model in
Equation (2.1) to include a variable describing people shape variability. For
example, given several sequences of walking silhouettes, as in Figure 2.7, with
different people walking, how to decompose the intrinsic body configuration
through the action from the appearance (or shape) of the person performing
the action. we aim to learn a decomposable generative model that explicitly
decomposes the following two factors:

• Content (body pose): A representation of the intrinsic body configuration
through the motion as a function of time that is invariant to the person,
i.e., the content characterizes the motion or the activity.

• Style (people) : Time-invariant person parameters that characterize the
person appearance (shape).

On the other hand, given an observation of certain person at a certain
body pose and given the learned generative model we aim to be able to solve
for both the body configuration representation (content) and the person pa-
rameter (style). In our case the content is a continuous domain while style is
represented by the discrete style classes which exist in the training data where
we can interpolate intermediate styles and/or intermediate contents.

This can be formulated as a view-based generative model in the form

ys
t = γ(xc

t ; a, b
s) (2.8)

where the image, ys
t , at time t and of style s is an instance driven from a

generative model where the function γ(·) is a mapping function that maps
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from a representation of body configuration xc
t (content) at time t into the

image space given mapping parameters a and style dependent parameter bs

that is time invariant.2 A framework was introduced in [73] to learn a de-
composable generative model that explicitly decomposes the intrinsic body
configuration (content) as a function of time from the appearance (style) of
the person performing the action as time-invariant parameter. The framework
is based on decomposing the style parameters in the space of nonlinear func-
tions that maps between a learned unified nonlinear embedding of multiple
content manifolds and the visual input space.

Suppose that we can learn a unified, style-invariant, nonlinearly embed-
ded representation of the motion manifold M in a low-dimensional Euclidean
embedding space, R

e, then we can learn a set of style-dependent nonlinear
mapping functions from the embedding space into the input space, i.e., func-
tions γs(xc

t) : R
e → R

d that maps from embedding space with dimensionality
e into the input space (observation) with dimensionality d for style class s.
Since we consider nonlinear manifolds and the embedding is nonlinear, the use
of nonlinear mapping is necessary. We consider mapping functions in the form

ys
t = γs(xt) = Cs · ψ(xc

t) (2.9)

where Cs is a d × N linear mapping and ψ(·) : R
e → R

N is a nonlinear
mapping where N basis functions are used to model the manifold in the
embedding space, i.e.,

ψ(·) = [ψ1(·), · · · , ψN (·)]T

Given learned models of the form of Equation (2.9), the style can be de-
composed in the linear mapping coefficient space using bilinear model in a way
similar to [48,49]. Therefore, input instance yt can be written as asymmetric
bilinear model in the linear mapping space as

yt = A×3 b
s ×2 ψ(xc

t) (2.10)

where A is a third order tensor (3-way array) with dimensionality d×N × J ,
bs is a style vector with dimensionality J , and ×n denotes mode-n tensor
product. Given the role for style and content defined above, the previous
equation can be written as

yt = A×3 b
people ×2 ψ(xpose

t ) (2.11)

Figure 2.8 shows examples for decomposing styles for gait. The learned
generative model is used to interpolate walking sequences at new styles as
well as to solve for the style parameters and body pose. In this experiment we
used five sequences for five different people3 each containing about 300 frames
which are noisy. The learned manifolds are shown in Figure 2.8-c which shows
2 We use the superscript s, c to indicate which variables denote style or content

respectively.
3 The data are from CMU Mobogait database.
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(a) Interpolated walks for five people

(b) Interpolated walk at intermediate style
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(c) Learned Manifolds
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Fig. 2.8. (a) Interpolated walks for five people. (b) Interpolated walk at intermedi-
ate style between person 1 and 4. (c) Learned manifolds for the five people and the
unified manifold (bottom right). (d) Estimated style parameters given the unified
manifold. (e) Style classification for test data of 40 frames for 5 people.

a different manifold for each person. The learned unified manifold is also shown
in Figure 2.8-c. Figure 2.8-b shows interpolated walking sequences for the five
people generated by the learned model. The figure also shows the learned style
vectors. We evaluated style classifications using 40 frames for each person and
the result is shown in the figure with correct classification rate of 92%. We
also used the learned model to interpolate walks in new styles. The last row
in the figure shows interpolation between person 1 and person 4.

2.4 Style Adaptive Tracking: Bayesian Tracking
on a Manifold

Given the explicit manifold model and the generative model learned in
Section 2.3, we can formulate contour tracking within a Bayesian tracking
framework. We can achieve style adaptive contour tracking on cluttered en-
vironments where the generative model can be used as an observation model
to generate contours of different people shape styles and different poses. The
tracking is performed on three conceptually independent spaces: body configu-
ration space, shape style space and geometric transformation space. Therefore,
object state combines heterogeneous representations. The manifold provides
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Fig. 2.9. A graphic model for the factorized generative model used for adaptive
contour tracking.

a constraint on the motion, which reduces the system dynamics of the global
nonlinear deformation into a linear dynamic system. The challenge will be
how to represent and handle multiple spaces without falling into exponential
increase of the state space dimensionality. Also, how to do tracking in a shape
space which can be high dimensional?

Figure 2.9 shows a graphical model illustrating the relation between dif-
ferent variables. The shape at each time step is an instance driven from a
generative model. Let zt ∈ R

d be the shape of the object at time instance t
represented as a point in a d-dimensional space. This instance of the shape is
driven from a model in the form

zt = Tαt
γ(bt, st; θ), (2.12)

where the γ(·) is a nonlinear mapping function that maps from a represen-
tation of the body configuration bt and a representation person shape style
st, independent from the configuration, into the observation space given the
mapping parameter θ. Tαt

represents a geometric transformation on the shape
instance. Given this generative model, we can fully describe observation in-
stance zt by state parameters αt, bt, and st. The mapping γ(bt, st; θ) is a
nonlinear mapping from the body configuration state bt as

yt = A× st × ψ(bt), (2.13)

where ψ(bt) is a kernel induced space, A is a third order tensor, st is a shape
style vector o person k and × is appropriate tensor product. Given this form,
the mapping parameter θ is the tensor A.

The tracking problem is then an inference problem where at time t we
need to infer the body configuration representation bt and the person specific
parameter st and the geometric transformation Tαt

given the observation zt.
The Bayesian tracking framework enables a recursive update of the posterior
P (Xt|Zt) over the object state Xt given all observation Zt = Z1, Z2, .., Zt up
to time t:
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P (Xt|Zt) ∝ P (Zt|Xt)
∫

Xt−1

P (Xt|Xt−1)P (Xt−1|Zt−1) (2.14)

In our generative model, the state Xt is [αt, bt, st], which uniquely describes
the state of the tracking object. Observation Zt is the captured image instance
at time t.

The state Xt is decomposed into three substates αt, bt, st. These three ran-
dom variables are conceptually independent since we can combine any body
configuration with any person shape style with any geometrical transformation
to synthesize a new contour. However, they are dependent given the obser-
vation Zt. It is hard to estimate joint posterior distribution P (αt, bt, st|Zt)
for its high-dimensionality. The objective of the density estimation is to es-
timate states αt, bt, st for a given observation. The decomposable feature of
our generative model enables us to estimate each state by a marginal den-
sity distribution P (αt|Zt), P (bt|Zt), and P (st|Zt). We approximate marginal
density estimation of one state variable along representative values of the
other state variables. For example, in order to estimate marginal density of
P (bt|Zt), we estimate P (bt|α∗

t , s
∗
t , Z

t), where α∗
t , s

∗
t are representative values

such as maximum posteriori estimates.
modelling body configuration space: Given a set of training data for
multiple people, a unified mean manifold embedding can be obtained as was
explained in Section 2.3. The mean manifold can be parameterized by a one-
dimensional parameter βt ∈ R and a spline fitting function f : R → R

3,
which satisfies bt = f(βt), to map from the parameter space into the three-
dimensional embedding space.
modelling style shape space: Shape style space is parameterized by a
linear combination of basis of the style space. A generative model in the form
of Equation (2.13) is fitted to the training data. Ultimately the style parameter
s should be independent of the configuration and therefore should be time
invariant and can be estimated at initialization. However, we do not know the
person style initially, therefore, the style needs to fit to the correct person style
gradually during the tracking. So, we formulated style as time variant factor
that should stabilize after some frames from initialization. The dimension of
the style vector depends on the number of people used for training and can
be high dimensional.

We represent new style as a convex linear combination of style classes
learned from the training data. The tracking of the high-dimensional style
vector st itself will be hard as it can fit local minima easily. A new style
vector s is represented by linear weighting of each of the style classes sk,
k = 1, · · · ,K using linear weight vector λ = [λk, · · · , λK ]T :

s =
K∑

k=1

λksk,
K∑

k=1

λk = 1, (2.15)

where K is the number of style classes used to represent new styles. The
overall generative model can be expressed as
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Fig. 2.10. Tracking for a known person.

zt = Tαt

(
A×
[

K∑
k=1

λk
t s

k

]
× ψ(f(βt))

)
. (2.16)

Tracking problem using this generative model is the estimation of the parame-
ters αt, βt, and λt at each new frame given the observation zt. Tracking can
be done using a particle filter as was shown in [78, 79]. Figures 2.10 and 2.11
show style adaptive tracking results for two subjects. In the first case, the
person style is in the training set while in the second case the person was
not seen before in the training. In both cases, the style parameter started at
the mean style and adapted correctly to the person shape. It is clear that
the estimated body configuration shows linear dynamics and the particles are
showing a gaussian distribution on the manifold.

2.5 Adding More Variability: A Factorized Generative
Model

In Section 2.3 it was shown how to separate a style factor when learning a
generative model for data lying on a manifold. Here we generalize this concept
to decompose several style factors. For example, consider the walking motion
observed from multiple viewpoints (as silhouettes). The resulting data lie on
multiple subspaces and/or multiple manifolds. There is the underling motion
manifold, which is one dimensional for the gait motion. There is the view
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Fig. 2.11. Tracking for an unknown person.

manifold and the space of different people’s shapes. Another example we con-
sider is facial expressions. Consider face data of different people performing
different facial dynamic expressions such as sad, smile, surprise, etc. The re-
sulting face data posses several dimensionality of variability: the dynamic
motion, the expression type and the person face. So, how to model such data
in a generative manner. We follow the same framework of explicitly modelling
the underlying motion manifold and over that we decompose various style
factors.

We can think of the image appearance (similar argument for shape) of a
dynamic object as instances driven from such generative model. Let yt ∈ R

d

be the appearance of the object at time instance t represented as a point in a
d-dimensional space. This instance of the appearance is driven from a model
in the form

yt = Tαγ(xt; a1, a2, · · · , an) (2.17)

where the appearance, yt, at time t is an instance driven from a generative
model where the function γ is a mapping function that maps body configura-
tion xt at time t into the image space. i.e., the mapping function γ maps from
a representation of the body configuration space into the image space given
mapping parameters a1, · · · , an each representing a set of conceptually or-
thogonal factors. Such factors are independent of the body configuration and
can be time variant or invariant. The general form for the mapping function
γ that we use is

γ(xt; a1, a2, · · · , an) = C ×1 a1 × · · · ×n an · ψ(xt) (2.18)
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where ψ(x) is a nonlinear kernel map from a representation of the body con-
figuration to a kernel induced space and each ai is a vector representing a
parameterization of orthogonal factor i, C is a core tensor, ×i is mode-i tensor
product as defined in [52,80].

For example for the gait case, a generative model for walking silhouettes
for different people from different viewpoints will be in the form

yt = γ(xt; v, s) = C × v × s× ψ(x) (2.19)

where v is a parameterization of the view, which is independent of the body
configuration but can change over time, and s is a parameterization of the
shape style of the person performing the walk which is independent of the
body configuration and time invariant. The body configuration xt evolves
along a representation of the manifold that is homeomorphic to the actual
gait manifold.

Another example is modelling the manifolds of facial expression motions.
Given dynamic facial expression such as sad, surprise, happy, etc., where each
expression start from neutral and evolve to a peak expression; each of these
motions evolves along a one-dimensional manifold. However, the manifold will
be different for each person and for each expression. Therefore, we can use a
generative model to generate different people faces and different expressions
using a model in the form be in the form

yt = γ(xt; e, f) = A× e× f × ψ(xt) (2.20)

where e is an expression vector (happy, sad, etc.) that is invariant of time
and invariant of the person face, i.e., it only describes the expression type.
Similarly, f is a face vector describing the person face appearance which is
invariant of time and invariant of the expression type. The motion content is
described by x which denotes the motion phase of the expression, i.e., starts
from neutral and evolves to a peak expression depending on the expression
vector, e.

The model in Equation (2.18) is a generalization over the model in
Equations (2.1) and (2.8). However, such generalization is not obvious. In
Section 2.3 LLE was used to obtain manifold embeddings, and then a mean
manifold is computed as a unified representation through nonlinear warping
of manifold points. However, since the manifolds twists very differently given
each factor (different people or different views, etc.) it is not possible to achieve
a unified configuration manifold representation independent of other factors.
These limitations motivate the use of a conceptual unified representation of
the configuration manifold that is independent of all other factors. Such uni-
fied representation would allow the model in Equation (2.18) to generalize
to decompose as many factors as desired. In the model in Equation (2.18),
the relation between body configuration and the input is nonlinear where
other factors are approximated linearly through multilinear analysis. The use
of nonlinear mapping is essential since the embedding of the configuration
manifold is nonlinearly related to the input.
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The question is what conceptual representation of the manifold we can use.
For example, for the gait case, since the gait is 1D closed manifold embedded
in the input space, it is homeomorphic to a unit circle embedded in 2D. In
general, all closed 1D manifold is topologically homeomorphic to unit circles.
We can think of it as a circle twisted and stretched in the space based on
the shape and the appearance of the person under consideration or based
on the view. So we can use such unit circle as a unified representation of
all gait cycles for all people for all views. Given that all the manifolds under
consideration are homeomorphic to unit circle, the actual data is used to learn
nonlinear warping between the conceptual representation and the actual data
manifold. Since each manifold will have its own mapping, we need to have a
mechanism to parameterize such mappings and decompose all these mappings
to parameterize variables for views, different people, etc.

Given an image sequences ya
t , t = 1, · · · , T where a denotes a particular

class setting for all the factors a1, · · · , an (e.g., a particular person s and view
v) representing a whole motion cycle and given a unit circle embedding of
such data as xa

t ∈ R
2 we can learn a nonlinear mapping in the form

ya
t = Baψ(xa

t ) (2.21)

Given such mapping the decomposition in Equation (2.1) can be achieved
using tensor analysis of the coefficient space such that the coefficient Ba are
obtained from a multilinear [80] model

Ba = C ×1 a1 × · · · ×n an

Given a training data and a model fitted in the form of Equation (2.18) it
is desired to use such model to recover the body configuration and each of the
orthogonal factors involved, such as viewpoint and person shape style given a
single test image or given a full or a part of a motion cycle. Therefore, we are
interested in achieving an efficient solution to a nonlinear optimization prob-
lem in which we search for x∗, a∗i which minimize the error in reconstruction

E(x, a1, · · · , an) =|| y − C ×1 a1 × · · · ×n an × ψ(x) || (2.22)

or a robust version of the error. In [81] an efficient algorithms were introduced
to recover these parameters in the case of a single image input or a sequence
of images using deterministic annealing.

2.5.1 Dynamic Shape Example: Decomposing View and Style
on the Gait Manifold

In this section we show an example of learning the nonlinear manifold of gait
as an example of a dynamic shape. We used CMU Mobo gait data set [82]
which contains walking people from multiple synchronized views4. For training
4 CMU Mobo gait data set [82] contains 25 people, about 8 to 11 walking cycles

each captured from six different viewpoints. The walkers were using a treadmill.
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Fig. 2.12. (a, b) Example of training data. Each sequence shows a half cycle only.
(a) four different views used for person 1. (b) side views of people 2, 3, 4, 5. (c) style
subspace: each person cycles have the same label. (d) unit circle embedding for three
cycles. (e) Mean style vectors for each person cluster. (f) view vectors.

we selected five people, five cycles each from four different views. i.e., total
number of cycles for training is 100 = 5 people × 5 cycles × 4 views. Note
that cycles of different people and cycles of the same person are not of the
same length. Figure 2.12-a,b show examples of the sequences (only half cycles
are shown because of limited space).

The data is used to fit the model as described in Equation (2.19). Images
are normalized to 60 × 100, i.e., d = 6, 000. Each cycle is considered to be
a style by itself, i.e., there are 25 styles and 4 views. Figure 2.12-d shows
an example of model-based aligned unit circle embedding of three cycles.
Figure 2.12-c shows the obtained style subspace where each of the 25 points
corresponding to one of the 25 cycles used. Important thing to notice is that
the style vectors are clustered in the subspace such that each person style
vectors (corresponding to different cycles of the same person) are clustered
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together which indicate that the model can find the similarity in the shape
style between different cycles of the same person. Figure 2.12-e shows the
mean style vectors for each of the five clusters. Figure 2.12-f shows the four
view vectors.

Figure 2.13 shows example of using the model to recover the pose, view and
style. The figure shows samples of a one full cycle and the recovered body con-
figuration at each frame. Notice that despite the subtle differences between the
first and second halves of the cycle, the model can exploit such differences to
recover the correct pose. The recovery of 3D joint angles is achieved by learn-
ing a mapping from the manifold embedding and 3D joint angle from motion
captured data using GRBF in a way similar to Equation (2.21). Figure 2.13-b
and Figure 2.13-c show the recovered style weights (class probabilities) and
view weights respectively for each frame of the cycle which shows correct per-
son and view classification. Figure 2.14 shows examples recovery of the 3D
pose and view class for four different people non of them was seen in training.

(a)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Number

Sty
le W

eigh
t

style 1 
style 2 
style 3 
style 4 
style 5 

(b)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Number

Vie
w W

eigh
t view 1 

view 2

view 4

view 3

(c)

Fig. 2.13. Examples of pose, style, and view recovery. (a) From top to bottom: input
shapes, implicit function, and recovered 3D pose. Odd-numbered frames, from 1 to
39, are shown. (b) Recovered style weights at each frame. (c) Recovered view weights
at each frame.
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Fig. 2.14. Examples of pose and view recovery for four different people from four
views.
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Fig. 2.15. Facial expression analysis for 8 subjects with 6 expressions from Cohn-
Kanade Data set. (a) embedding in the style space.(b) embedding in the expression
space. First three dimensions are shown.

2.5.2 Dynamic Appearance Example: Facial Expression Analysis

We used the model to learn facial expressions manifolds for different people.
We used CMU-AMP facial expression database where each subject has 75
frames of varying facial expressions. We choose four people and three expres-
sions each (smile, anger, surprise) where corresponding frames are manually
segmented from the whole sequence for training. The resulting training set
contained 12 sequences of different lengths. All sequences are embedded to
unit circles and aligned as described in Section 2.5. A model in the form of
Equation (2.20) is fitted to the data where we decompose two factors: person
facial appearance style factor and expression factor besides the body configu-
ration which is nonlinearly embedded on a unit circle. Figure 2.15 shows the
resulting person style vectors and expression vectors.

We used the learned model to recognize facial expression, and person iden-
tity at each frame of the whole sequence. Figure 2.16 shows an example of a
whole sequence and the different expression probabilities obtained on a frame
per frame basis. The figure also shows the final expression recognition after
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Fig. 2.16. From top to bottom: Samples of the input sequence; Expression proba-
bilities; Expression classification; Style probabilities.

thresholding along manual expression labeling. The learned model was used
to recognize facial expressions for sequences of people not used in the training.
Figure 2.17 shows an example of a sequence of a person not used in the train-
ing. The model can successfully generalizes and recognize the three learned
expression for this new subject.

2.6 Conclusion

In this chapter we focused on exploiting the underlying motion manifold for
human motion analysis and synthesis. we introduced a framework for learn-
ing a landmark-free correspondence-free global representations of dynamic
shape and dynamic appearance manifolds. The framework is based on using
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Fig. 2.17. Generalization to new people: expression recognition for a new person.
From top to bottom: Samples of the input sequence; Expression probabilities; Ex-
pression classification; Style probabilities.

nonlinear dimensionality reduction to achieve an embedding of the global
deformation manifold, which preserves the geometric structure of the mani-
fold. Given such embedding, a nonlinear mapping is learned from such em-
bedded space into the visual input space using the RBF interpolation. Given
this framework, any visual input is represented by a linear combination of
nonlinear bases functions centered along the manifold in the embedded space.
In a sense, the approach utilizes the implicit correspondences imposed by
the global vector representation which are only valid locally on the manifold
through explicit modelling of the manifold and the RBF interpolation where
closer points on the manifold will have higher contributions than far away
points.
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We also showed how approximate solution for the inverse mapping can be
obtained in a closed-form, which facilitates the recovery of the intrinsic body
configuration. The framework was applied to learn a representation of the
gait manifold as an example of a dynamic shape manifold. We showed how
the learned representation can be used to interpolate intermediate body poses
as well as in recovery and reconstruction of the input. We also learn mappings
from the embedded motion manifold to a 3D joint angle representation, which
yields an approximate closed-form solution for 3D pose recovery.

We showed how to learn a decomposable generative model that sepa-
rates appearance variations from the intrinsics underlying dynamics’ manifold
though introducing a framework for separation of style and content on a non-
linear manifold. The framework is based on decomposing the style parameters
in the space of nonlinear functions that maps between a learned unified nonlin-
ear embedding of multiple content manifolds and the visual input space. The
framework yields an unsupervised procedure, which handles dynamic non-
linear manifolds. It also improves on past work on nonlinear dimensionality
reduction by being able to handle multiple manifolds. The proposed frame-
work was shown to be able to separate style and content on both the gait
manifold and simple facial expression manifolds. As mention in [62], an inter-
esting and important question is how to learn a parametric mapping between
the observation and a nonlinear embedding space. We partially addressed this
question. More details about this topic can be found in [73].

The use of a generative model is necessary since the mapping from the
manifold representation to the input space will be well defined in contrast to
a discriminative model where the mapping from the visual input to manifold
representation is not necessarily a function. We introduced a framework to
solve for various factors such as body configuration, view, and shape style.
Since the framework is generative, it fits well in a Bayesian tracking frame-
work and it provides separate low-dimensional representations for each of the
modeled factors. Moreover, a dynamic model for configuration is well defined
since it is constrained to the 1D manifold representation. The framework also
provides a way to initialize a tracker by inferring about body configuration,
viewpoint, body shape style from a single or a sequence of images.

The framework presented in this chapter was basically applied to one-
dimensional motion manifolds such as gait and facial expressions. One-
dimensional manifolds can be explicitly modeled in a straight forward way.
However, there is no theoretical restriction that prevents the framework from
dealing with more complicated manifolds. In this chapter we mainly modeled
the motion manifold while all appearance variability are modeled using sub-
space analysis. Extension to modelling multiple manifolds simultaneously is
very challenging. We investigated modelling both the motion and the view
manifolds in [83]. The proposed framework has been applied to gait analysis
and recognition in [78,79,84,85]. It was also used in analysis and recognition
of facial expressions in [86,87].



52 A. Elgammal and C.-S. Lee

Acknowledgments

This research is partially funded by NSF award IIS-0328991

References

1. J.O’Rourke, Badler: Model-based image analysis of human motion using con-
straint propagation. IEEE PAMI 2(6) (1980)

2. Hogg, D.: Model-based vision: a program to see a walking person. Image and
Vision Computing 1(1) (1983) 5–20

3. Chen, Z., Lee, H.: Knowledge-guided visual perception of 3-d human gait from
single image sequence. IEEE SMC 22(2) (1992) 336–342

4. Rohr, K.: Towards model-based recognition of human movements in image
sequence. CVGIP 59(1) (1994) 94–115

5. Rehg, J.M., Kanade, T.: Model-based tracking of self-occluding articulated
objects. In: ICCV (1995) 612–617

6. Gavrila, D., Davis, L.: 3-d model-based tracking of humans in action: a multi-
view approach. In: IEEE Conference on Computer Vision and Pattern Recog-
nition. Volume 73–80 (1996)

7. Kakadiaris, I.A., Metaxas, D.: Model-based estimation of 3D human motion
with occlusion based on active multi-viewpoint selection. In: Proc. IEEE Conf.
Computer Vision and Pattern Recognition, CVPR, Los Alamitos, California,
USA, IEEE Computer Society (1996) 81–87

8. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3d human figures
using 2d image motion. In: ECCV (2) (2000) 702–718

9. Rehg, J.M., Kanade, T.: Visual tracking of high DOF articulated structures: an
application to human hand tracking. In: ECCV (2) (1994) 35–46

10. Darrell, T., Pentland, A.: Space-time gesture. In: Proc IEEE CVPR (1993)
11. Campbell, L.W., Bobick, A.F.: Recognition of human body motion using phase

space constraints. In: ICCV (1995) 624–630
12. Wern, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time

tracking of human body. IEEE Transaction on Pattern Analysis and Machine
Intelligence 19(7) (1997)

13. Ju, S.X., Black, M.J., Yacoob, Y.: Cardboard people: A parameterized model
of articulated motion. In: International Conference on Automatic Face and
Gesture Recognition, Killington, Vermont (1996) 38–44

14. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of
articulated objects using a view-based representation. In: ECCV (1) (1996)
329–342

15. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Who? when? where? what? a real
time system for detecting and tracking people. In: International Conference on
Automatic Face and Gesture Recognition (1998) 222–227

16. Yacoob, Y., Black, M.J.: Parameterized modelling and recognition of activities.
Computer Vision and Image Understanding: CVIU 73(2) (1999) 232–247

17. Fablet, R., Black, M.J.: Automatic detection and tracking of human motion
with a view-based representation. In: Proc. ECCV 2002, LNCS 2350 (2002)
476–491



2 Manifold Learning in Human Motion Analysis 53

18. Sidenbladh, H., Black, M.J., Sigal, L.: Implicit probabilistic models of human
motion for synthesis and tracking. In: Proc. ECCV 2002, LNCS 2350 (2002)
784–800

19. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: ‘Dynamism of a dog on a
leash’ or behavior classification by eigen-decomposition of periodic motions. In:
Proceedings of the ECCV’02, Copenhagen, Springer, LNCS 2350 (2002) 461–475

20. Polana, R., Nelson, R.C.: Qualitative detection of motion by a moving observer.
International Journal of Computer Vision 7(1) (1991) 33–46

21. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal
texture. CVGIP Image Understanding 56(1) (1992) 78–89

22. Polana, R., Nelson, R.: Low level recognition of human motion (or how to get
your man without finding his body parts). In: IEEE Workshop on Non-Rigid
and Articulated Motion (1994) 77–82

23. Polana, R., Nelson, R.C.: Detecting activities. Journal of Visual Communication
and Image Representation (1994)

24. Niyogi, S., Adelson, E.: Analyzing and recognition walking figures in xyt. In:
Proc. IEEE CVPR (1994) 469–474

25. Song, Y., Feng, X., Perona, P.: Towards detection of human motion. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2000) (2000) 810–817

26. Rittscher, J., Blake, A.: Classification of human body motion. In: IEEE Inter-
national Conferance on Compute Vision (1999)

27. Bobick, A., Davis, J.: The recognition of human movement using temporal
templates. IEEE Transactions on Pattern Analysis and Machine Intelligence
23(3) (2001) 257–267

28. Cutler, R., Davis, L.: Robust periodic motion and motion symmetry detection.
In: Proc. IEEE CVPR (2000)

29. Mori, G., Malik., J.: Estimating human body configurations using shape context
matching. In: European Conference on Computer Vision (2002)

30. Kristen Grauman, Gregory Shakhnarovich, T.D.: Inferring 3d structure with a
statistical image-based shape model. In: ICCV (2003)

31. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-
sensitive hashing. In: ICCV (2003)

32. Howe, Leventon, Freeman, W.: Bayesian reconstruction of 3d human motion
from single-camera video. In: Proc. NIPS (1999)

33. Brand, M.: Shadow puppetry. In: International Conference on Computer Vision.
Volume 2 (1999) 1237

34. Rosales, R., Sclaroff, S.: Inferring body pose without tracking body parts. Tech-
nical Report 1999-017 (1999)

35. Rosales, R., Sclaroff, S.: Specialized mappings and the estimation of human
body pose from a single image. In: Workshop on Human Motion (2000) 19–24

36. Rosales, R., Athitsos, V., Sclaroff, S.: 3D hand pose reconstruction using spe-
cialized mappings. In: Proc. ICCV (2001)

37. Christoudias, C.M., Darrell, T.: On modelling nonlinear shape-and-texture ap-
pearance manifolds. In: Proc.of IEEE CVPR. Volume 2 (2005) 1067–1074

38. Rahimi, A., Recht, B., Darrell, T.: Learning appearane manifolds from video.
In: Proc.of IEEE CVPR. Volume 1 (2005) 868–875

39. Bowden, R.: Learning statistical models of human motion. In: IEEE Workshop
on Human Modelling, Analysis and Synthesis (2000)



54 A. Elgammal and C.-S. Lee

40. Toyama, K., Blake, A.: Probabilistic tracking in a metric space. In: ICCV (2001)
50–59

41. Bregler, C., Omohundro, S.M.: Nonlinear manifold learning for visual speech
recognition (1995) 494–499

42. Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag (1986)
43. M.Turk, A.Pentland: Eigenfaces for recognition. Journal of Cognitive Neuro-

science 3(1) (1991) 71–86
44. Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces:

Recognition using class specific linear projection. In: ECCV (1) (1996) 45–58
45. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models:

Their training and application. CVIU 61(1) (1995) 38–59
46. Levin, A., Shashua, A.: Principal component analysis over continuous sub-

spaces and intersection of half-spaces. In: ECCV, Copenhagen, Denmark (2002)
635–650

47. Murase, H., Nayar., S.: Visual learning and recognition of 3d objects from
appearance. International Journal of Computer Vision 14 (1995) 5–24

48. Tenenbaum, J., Freeman, W.T.: Separating style and content with bilinear
models. Neural Computation 12 (2000) 1247–1283

49. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensebles: Ten-
sorfaces. In: Proc. of ECCV, Copenhagen, Danmark (2002) 447–460

50. Magnus, J., Neudecker, H.: Matrix Differential Calculus with Applications in
Statistics and Econometrics. Wiley, New York (1988)

51. Marimont, D., Wandell, B.: Linear models of surface and illumination spectra.
Journal of Optical Society od America 9 (1992) 1905–1913

52. Lathauwer, L.D., de Moor, B., Vandewalle, J.: A multilinear singular value de-
composiiton. SIAM Journal On Matrix Analysis and Applications 21(4) (2000)
1253–1278

53. Shashua, A., Levin, A.: Linear image coding of regression and classification
using the tensor rank principle. In: Proc. of IEEE CVPR, Hawai (2001)

54. Vasilescu, M.A.O.: An algorithm for extracting human motion signatures. In:
Proc. of IEEE CVPR, Hawai (2001)

55. Wang, H., Ahuja, N.: Rank-r approximation of tensors: Using image-as-matrix
representation. (In: Proc IEEE CVPR)

56. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31 (1966) 279–311

57. Kapteyn, A., Neudecker, H., Wansbeek, T.: An approach to n-model component
analysis. Psychometrika 51(2) (1986) 269–275

58. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca).
In: Proceedings of IEEE CVPR. Volume 1 (2003) 621–628

59. Vidal, R., Hartley, R.: Motion segmentation with missing data using powerfac-
torization and gpca (2004)

60. Cox, T., Cox, M.: Multidimentional scaling. Chapman & Hall (1994)
61. Tenenbaum, J.: Mapping a manifold of perceptual observations. In: Advances

in Neural Information Processing. Volume 10 (1998) 682–688
62. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear em-

bedding. Sciene 290(5500) (2000) 2323–2326
63. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Comput. 15(6) (2003) 1373–1396
64. Brand, M., Huang, K.: A unifying theorem for spectral embedding and cluster-

ing. In: Proc. of the Ninth International Workshop on AI and Statistics (2003)



2 Manifold Learning in Human Motion Analysis 55

65. Lawrence, N.: Gaussian process latent variable models for visualization of high
dimensional data. In: NIPS (2003)

66. Weinberger, K.W., Saul, L.K.: Unsupervised learning of image manifolds by
semidefinite programming. In: Proceedings of IEEE CVPR. Volume 2 (2004)
988–995

67. Mordohai, P., Medioni, G.: Unsupervised dimensionality estimation and man-
ifold learning in high-dimensional spaces by tensor voting. In: Proceedings of
International Joint Conference on Artificial Intelligence (2005)

68. Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J.F., Vincent, P., Ouimet,
M.: Learning eigenfunctions links spectral embedding and kernel pca. Neural
Comp. 16(10) (2004) 2197–2219

69. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A kernel view of the dimensionality
reduction of manifolds. In: Proceedings of ICML, New York, NY, USA, ACM
Press (2004) 47

70. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization and Beyond. MIT Press, Cambridge, Massachusetts
(2002)

71. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet,
M.: Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral
clustering. In: NIPS 16 (2004)

72. Elgammal, A.: Nonlinear generative models for dynamic shape and dynamic
appearance. In: Proc. of 2nd International Workshop on Generative-Model based
vision. GMBV 2004 (2004)

73. Elgammal, A., Lee, C.S.: Separating style and content on a nonlinear manifold.
In: Proc. of CVPR (2004) 478–485

74. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290(5500)
(2000) 2268–2269

75. Poggio, T., Girosi, F.: Network for approximation and learning. Proc. IEEE
78(9) (1990) 1481–1497

76. Beymer, D., Poggio, T.: Image representations for visual learning. Science
272(5250) (1996)

77. Elgammal, A., Lee, C.S.: Inferring 3d body pose from silhouettes using activity
manifold learning. In: Proc. IEEE Conference on Computer Vision and Pattern
Recognition (2004)

78. Lee, C.S., Elgammal, A.: Style adaptive bayesian tracking using explicit mani-
fold learning. In: Proc BMVC (2005)

79. Lee, C.S., Elgammal, A.: Gait tracking and recognition using person-dependent
dynamic shape model. In: International Conference on Automatic Face and
Gesture Recognition. Volume 0., IEEE Computer Society (2006) 553–559

80. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis of image
ensembles. (2003)

81. Lee, C.S., Elgammal, A.: Homeomorphic manifold analysis: Learning decompos-
able generative models for human motion analysis. In: Workshop on Dynamical
Vision (2005)

82. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Technical Report
TR-01-18, Carnegie Mellon University (2001)

83. Lee, C.S., Elgammal, A.M.: Simultaneous inference of view and body pose using
torus manifolds. In: ICPR (3) (2006) 489–494



56 A. Elgammal and C.-S. Lee

84. Lee, C.S., Elgammal, A.: Gait style and gait content: Bilinear model for gait
recogntion using gait re-sampling. In: International Conference on Automatic
Face and Gesture Recognition (2004) 147–152

85. Lee, C.S., Elgammal, A.M.: Towards scalable view-invariant gait recognition:
Multilinear analysis for gait. In: AVBPA (2005) 395–405

86. Lee, C.S., Elgammal, A.: Facial expression analysis using nonlinear decompos-
able generative models. In: AMFG (2005) 17–31

87. Lee, C.S., Elgammal, A.M.: Nonlinear shape and appearance models for facial
expression analysis and synthesis. In: ICPR (1) (2006) 497–502



3

Recognition of Action as a Bayesian Parameter
Estimation Problem over Time

Volker Krüger
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Summary. In this chapter we will discuss two problems related to action recogni-
tion: The first problem is the one of identifying in a surveillance surveillance scenario
to determine walk or run gait and approximate direction. The second problem is con-
cerned with the recovery of action primitives from observed complex actions. Both
problems will be discussed within a statistical framework . Bayesian propagation over
time offers a framework to treat likelihood observations at each time step and the
dynamics between the time steps in a unified manner. The first problem will be
approached as a pattern recognition and tracking task by a Bayesian propagation
of the likelihoods. The latter problem will be approached by explicitly specifying
the dynamics while the likelihood measure will estimate how well each dynamical
model fits each time step. Extensive experimental results show the applicability of
the Bayesian framework for action recognition and round up our discussion.

3.1 Introduction

Understanding how we cognitively interpret the actions and activities of other
humans is a question that has been extensively studied [17, 43, 44]. This has
become interesting to the computer vision scientists in a number of different
contexts. In surveillance it is of interest to recognize suspicious and unusual
actions. In the robotics community, the question regarding how to recog-
nize action is intensively studied in the context of imitation learning and
human–humanoid interaction. In imitation learning , humans are teaching ro-
bots through simple demonstrations of what they are supposed to do. This
approach not only minimizes the training time for specific tasks but also en-
ables to teach humanoid robots to perform actions in a way that appears
familiar to a human observer.

To synthesize and recognize actions several techniques are possible. All
have in common that they need to detect and track meaningful features in the
video data. Usually, detection and tracking of the visual features is considered
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to be a problem of its own and is treated as such. In case of the action
recognition from video problem, tracking is treated independently from the
actual action recognition task. There are some publications that treat the
tracking and the recognition part in conjunction, e.g., Ormoneit et.al. [36].
However, they considers the specific action given a priori to assist the 3D
body tracking task.

In this chapter of the book we would like to argue that one should consider
both, the tracking and the action recognition, as a joint problem and estimate
them at the same time.

If we consider the tracking problem from a Bayesian perspective, then the
classical Bayesian propagation over time for tracking can be formalized as
follows:

p(αt|I1, I2, . . . , It) ≡ pt(αt)

=
∫

αt−1

p(It|αt)p(αt|αt−1)pt−1(αt−1)dαt . (3.1)

Here, αt = (xt, yt, st). The x, y denote the position of the object to be tracked,
s its scale and It the images in the video.

Equation 3.1 explains how the density p(αt|I1, I2, . . . , It) changes over
time when more image It become available. In order to estimate Equation 3.1
variants of Monte Carlo methods are usually applied, see [22,30] for applica-
tions in computer vision and [12,27,31,33] for a general treatment.

In their original papers of Isard and Blake [22] and Li and Chellappa [30]
only the estimation of the affine tracking parameters is considered.

However, Equation 3.1 offers a general framework for the estimation of
density functions over time. Let us consider the separate parts of it: the left-
most part, pt−1(αt−1), is the prior which summarizes our belief knowledge
up to time t − 1 of what values the parameters x, y and s should have. The
part to the right of the equal sign, p(It|αt), is the likelihood measure which
computes the likelihood or the “fit” of the new image It to our model with
model parameters xt, yt and st. In case of face tracking, the model is a face
image, translated and scaled according to the parameters xt, yt and st. If the
parameters are close to the true parameters of the face in the input video,
then this results into a large likelihood. If, on the other hand, the parameters
are very different from the true ones, then the fit of the new input image
with the model is usually small which then results into a small likelihood. A
good model is crucial for obtaining large likelihood measures and it is possible
to introduce further parameters to increase the model quality. For example,
one can use a set of models instead of just one by introducing an additional
random variable i as a model identifier. We have done this in the past [50] for
the face recognition from video problem where we had introduced a random
variable it to specify the identity of the person to be tracked. Consider the
following refinement of Equation 3.1:
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p(αt, it|I1, I2, . . . , It) ≡ pt(αt, it)

=
∑
it−1

∫
αt−1

p(It|αt, it)p(αt, it|αt−1, it−1)pt−1(αt−1, it−1) (3.2)

where αt = (xt, yt, st). For example, if it = k, then the likelihood function
uses the specific face image of individual k in the database for the likelihood
measure.

The second last part in Equation 3.1, p(αt|αt−1), is the propagation step or
diffusion-step which represents our belief of how the parameters change at the
time step from t− 1 to t. The propagation step contains a deterministic part,
which represents our knowledge of how the parameters have to change, as well
as a statistical part. In cases where one does not have a good knowledge of the
movement, a Gaussian diffusion of the parameters is usually a good choice.
On the other hand, a strong and dynamic model can lead to very good model
parameter predictions for the likelihood estimation. If the prediction model
is wrong, however, it also leads “deterministically” to very bad parameter
predictions and thus to very low likelihood estimates. This fact can be used
for action recognition.

In that sense, the use of the likelihood measure and of the propagation
model is complementary:

• The likelihood measure evaluates a specific observation model on an image,
given the set of model parameters. Complex tasks, such as face recognition
from video, can be solved with that.

• The prediction model is responsible for choosing the new model parame-
ters.

• The prediction itself can also be a parameterized. Here, the parameters can
be estimated in the same way as those of the model used in the likelihood
function, with the difference, however, that the prediction parameters are
evaluated only indirectly through the likelihood function.

As we will see (Section 3.3), one can do action recognition without the
use of an actual action/prediction model. On the other hand, the prediction
model itself can be also used for action recognition (Section 3.4). Clearly, for
robust action recognition, one would want to use both tools.

In the next section (Section 3.2) we will give an overview of related liter-
ature.

In Sections 3.3 and 3.4, we will develop the new approaches and verify
them in two large experiments.

In Section 3.3 we will deal with the problem of identifying whether a person
is walking or running and, to some extend, identify the direction the person is
moving to. We will consider a typical surveillance scenario where the camera
has a wide field of view and where individuals are far away from the camera
with only a small number of pixels in hight.

Each action gives rise to a set of typical silhouettes. By identifying the
silhouette in the video at each time step, we become able to identify the
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action. Technically, our problem of identifying running and walking actions
has several subproblems:

1. One needs to identify where the person is in the video. This is the tracking
problem (Equation 3.1).

2. One needs to identify what pose the person has in each particular moment
in time. This is similar to the recognition problem in [50].

3. One needs to identify how the pose changes over time in order to become
able to recognize the action. Clearly, the pose of the person changes ac-
cording to his/her action. In case of the surveillance scenario, we use this
only very rudimentary.

Section 3.3 will be concluded with experimental results (Section 3.3.3).
In Section 3.4 we will consider the problem of action recognition in a dif-

ferent manner by using the propagation model: We will use a parameterized
propagation/action model, where the parameter is used to identify a different
action model. In order to identify the action, we are left with identifying the
right propagation parameter. As an example application, it is assumed that
actions are composed out of action primitives. This is similar to speech recog-
nition, where words are composed out of phonemes. In speech recognition, the
first step in recognizing a word is to recognize the phonemes. Then, given the
phonemes, Hidden Markov Models (HMMs) are usually applied to recognize
the word. In action recognition, we face the same problem: First, the action
primitives need to be recognized. Then, the recognition of a more complex ac-
tion can follow. However, unlike phonemes which are relatively local in time
because of their short duration, action primitives are stretched out over time
periods that are often longer than a second in duration. Therefore, techniques
from speech recognition are not suitable for this problem. In Section 3.4.3 we
will present and experimentally verify a solution where HMMs are used to
model the propagation step in Equation 3.2.

3.2 Related Work

A pioneering work in the context our first problem has been presented by
Efros et al. [13]. They attempt to recognize simple actions of people whose
images in the video are only 30 pixels tall and where the video quality is
poor. They use a set of features that are based on blurred optic flow (blurred
motion channels). First, the person is tracked so that the image is stabilized in
the middle of a tracking window. The blurred motion channels are computed
on the residual motion that is due to the motion of the body parts. Spatio-
temporal cross-correlation is used for matching with a database. Roh et al. [45]
base their action recognition task on curvature scale space templates of a
player’s silhouette.

A large number of publications work with space-time volumes. One of the
main approaches is to use spatio-temporal XT -slices from an image volume
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XY T [41,42] where articulated motions of a human can be associated with a
typical trajectory pattern. Ricquebourg and Bouthemy [41] demonstrate how
XT -slices can facilitate tracking and reconstruction of 2D motion trajectories.
The reconstructed trajectory allows a simple classification between pedestri-
ans and vehicles. Ritscher et al. [42] discuss the recognition in more detail by
a closer investigation of the XT -slices. Quantifying the braided pattern in the
slices of the spatiotemporal cube gives rise to a set of features (one for each
slice) and their distribution is used to classify the actions.

Bobick and Davis pioneered the idea of temporal templates [2, 4]. They
propose a representation and recognition theory [2,4] that is based on motion
energy images (MEI) andmotion history images (MHI). The MEI is a binary
cumulative motion image. The MHI is an enhancement of the MEI where the
pixel intensities are a function of the motion history at that pixel. Matching
temporal templates is based on Hu moments. Bradski et al. [6] pick up the
idea of MHI and develop timed MHI (tMHI) for motion segmentation. tMHI
allow determination of the normal optical flow. Motion is segmented relative
to object boundaries and the motion orientation. Hu moments are applied to
the binary silhouette to recognize the pose. A work conceptually related to [4]
is by Masound and Papanikolopoulos [34]. Here, motion information for each
video frame is represented by a feature image. However, unlike [4], an action
is represented by several feature images. PCA is applied for dimensionality
reduction and each action is then represented by a manifold in PCA space.

The recovery of phonemes in speech recognition is a closely related to
our problem of action primitive recovery (Section 3.4). In speech recognition,
acoustic data gets samples and quantized, followed by using the LPC (Linear
Predictive Coding) to compute a cepstral feature set, or by a PLP (Percep-
tual Linear Predictive) analysis [18]. In a later step, time slices are analyzed.
Gaussians are often used to compute likelihoods of the observations of being
a phoneme [20]. An alternative way is to analyze time slices with an Artificial
Neural Network [5]. Timeslices seem to work well on phonemes that have a
very short duration. In our case, however, the action primitives have usually
a much longer duration and one would have a combinatorial problem when
considering time slices.

When viewing other agents performing an action, the human visual sys-
tem seems to relate the visual input to a sequence of motor primitives. The
neurobiological representation for visually perceived, learned and recognized
actions appears to be the same as the one used to drive the motor control of
the body [17, 43, 44]. These findings have gained considerable attention from
the robotics community [11,46]. In imitation learning the goal is to develop a
robot system that is able to relate perceived actions to its own motor control
in order to learn and to later recognize and perform the demonstrated actions.

In [24, 25], Jenkins et al. suggest applying a spatiotemporal nonlinear di-
mension reduction technique on manually segmented human motion capture
data. Similar segments are clustered into primitive units which are general-
ized into parameterized primitives by interpolating between them. In the same
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manner, they define action units (“behavior units”) which can be generalized
into actions. In [21] the problem of defining motor primitives is approached
from the motor side. They define a set of nonlinear differential equations that
form a control policy (CP) and quantify how well different trajectories can
be fitted with these CPs. The parameters of a CP for a primitive movement
are learned in a training phase. These parameters are also used to compute
similarities between movements. In [1, 7, 8] a HMM based approach is used
to learn characteristic features of repetitively demonstrated movements. They
suggest to use the HMM to synthesize joint trajectories of a robot. For each
joint, one HMM is used. In [8] an additional HMM is used to model end-
effector movement. In these approaches, the HMM structure is heavily con-
strained to assure convergence to a model that can be used for synthesizing
joint trajectories.

Generally, there is a very large body of literature on action recognition.
However, only a small subset is concerned with action primitives and their
detection and recognition. In [49], Vecchio and Perona employ techniques
from the dynamical systems framework to approach segmentation and classi-
fication. System identification techniques are used to derive analytical error
analysis and performance estimates. Once, the primitives are detected an it-
erative approach is used to find the sequence of primitives for a novel action.
In [32], Lu et al. also approach the problem from a system theoretic point
of view. Their goal is to segment and represent repetitive movements. For
this, they model the joint data over time with a second order auto-regressive
(AR) model and the segmentation problem is approached by detection signif-
icant changes of the dynamical parameters. Then, for each motion segment
and for each joint, they model the motion with a damped harmonic model.
In order to compare actions, a metric based on the dynamic model parame-
ters is defined. In [24, 25], Jenkins et al. suggest applying a spatiotemporal
nonlinear dimension reduction technique on manually segmented human mo-
tion capture data. Similar segments are clustered into primitive units which
are generalized into parameterized primitives by interpolating between them.
In the same manner, they define action units (“behavior units”) which can
be generalized into actions. While most scientists concentrate on the action
representation by circumventing the vision problem, [38] takes a vision-based
approach. They propose a view-invariant representation of action based on
dynamic instants and intervals. Dynamic instants are used as primitives of
actions which are computed from discontinuities of 2D hand trajectories. An
interval represents the time period between two dynamic instants (key poses).
A similar approach of using meaningful instants in time is proposed by Reng
et al. [39] where key poses are found based on the curvature and covariance
of the normalized trajectories. In [10] key poses are found through evaluation
of anti-eigenvalues.
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3.3 Recognition of Running and Walking Actions

In this section we present an approach that relies on a very simple propagation
model but uses instead a flexible set of observation models. The technique to
recognize the action can be compared with a dynamic pattern recognition
approach, rather than a pattern recognition approach for dynamics. With
our approach we will recognize walking and running actions of humans in a
surveillance scenario. The problem at hand is that the surveillance camera
has a wide field of view and the individual has only a small number of pixels in
height. Our interest is to detect whether a moving object is a person, whether
this person is running or walking, and in which rough direction the person is
moving (0◦, 45◦, or 90◦).

The idea is related to our model-based background subtraction system with
human walking and running poses at different camera orientations as the
model knowledge [28,29].

The approach consists of two parts: the learning part in which a suitable
set of silhouettes has to be captured and structured and the actual recognition
part.

Both parts consist of two steps: In a first step we apply a background
subtraction method [14] in order to extract the moving image parts. For the
training step, in order to capture good silhouettes, we assume a controlled
scenario which allows us to extract good silhouettes. In the recognition part,
we attempt to track and match the silhouettes in the database to the noisy
ones in the incoming video. The recognition part will make use of the ideas on
Bayesian parameter estimation over time, as outlined above. The statistical
integration of the observations over time make the recognition system very
robust to noise, occlusion and shadows, as we will show in the experiment
section, below.

3.3.1 Learning and Representation of Silhouettes

In order to generate our silhouette model knowledge we apply a classical
background subtraction method (BGS) [14] to a scenario that is controlled in
a manner that facilitates the learning process. In our case, since we want to
learn silhouettes of humans, we assure that only humans are visible in the
scene during training and that the background variations and shadows are
kept as small as possible to minimize distortions. Then, we use this video data
directly to capture the proper exemplars. The different classes of silhouettes
we have considered are walking and running, with the different angles of 0◦,
45◦ and 90◦ with respect to the camera.

After the application of a classical BGS, applying mean-shift tracking [9]
allows to extract from the BGS output-data a sequence of small image patches
containing, centered, the silhouette. This procedure is the same as the one
used in [26], however, with the difference that here we do not threshold the
BGS output but use probabilistic silhouettes (instead of binary ones as in
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Fig. 3.1. This image shows examples of the silhouette exemplars as learned in the
learning stage. These silhouettes are used as input to Isomap [48].

[26]). These silhouettes still contain for each silhouette pixel the belief of a
pixel being part of the foreground. Figure 3.1 shows some example silhouette
exemplars.

The set of silhouettes is not a vectorspace. However, for tracking and
recognizing the right silhouettes, as we will see later, it is of great advantage
to have at least a metric space of the silhouettes so that similar silhouettes
can be found. We have used Isomap [48] to generate a vector space from the
manifold of silhouettes. Each class of silhouettes is treated independently by
Isomap. Thus, we end up with six different vector spaces, three for walking and
three for running. As distance measure for the Isomap we used the Euclidean
distance.1 The topology of these six spaces resemble to real topology of the
silhouettes (see also [15, 16]). The topology of the silhouettes is used as an
implicit representation of the allowed pose changes.

3.3.2 Recognizing the Action in the Surveillance Scenario

We consider the problem of recognizing action as a pattern recognition prob-
lem to the output of the background subtraction approach. We use the pre-
viously learned silhouette exemplars to find the best match with the output
Ip(x) of a background subtraction application. Then, the silhouette class from
which the silhouettes are derived most of the time identifies the action.

Each pixel in the image Ip(x) contains a value in the range [0, 1], where 1
indicates the highest probability of a pixel being a foreground pixel.

An exemplar is selected and deformed according to a 5D parameter vector

θ = [n, a, s, x, y], (3.3)

where x and y denote the position of the silhouette in the image Ip, s its
scale, and n is a natural number that refers to a specific silhouette in the
action class a.
1 The more natural distance function for our probabilistic silhouettes is arguably

the Kullback-Leibler divergence measure. The use of this measure is presently
under investigation.
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We use normalized correlation to compute the distance between the exem-
plar silhouette, parameterized according to a deformation vector θt and the
appropriate region of interest at position xt and yt, as specified by θ in the
BGS image Ip

t (x).
In order to find at each time-step t the most likely θt in the image Ip

t (x),
we use, as already mentioned, Bayesian propagation over time

p(αt, at|Ip
1 , I

p
2 , . . . , I

p
t ) ≡ pt(αt, at)

=
∑
at−1

∫
αt−1

p(Ip
t |αt, at)p(αt, at|αt−1, at−1)pt−1(αt−1, at−1) (3.4)

with αt = [n, s, x, y]t. Here, Ip
t denotes the probability images, we use the

variable a to reference the action and n to reference a silhouette of the action
a. By considering the joint distribution of the silhouette id n and the action
a together with the tracking parameters we are able to view the tracking
and the recognition as a single problem. By marginalizing over the geometric
parameters α = (x, y, s, n),

p(at|Ip
1 , . . . , I

p
t ) =

∫
αt

p(αt, at|Ip
1 , . . . , I

p
t ) (3.5)

we can estimate the likelihood of each action a at any time. In a similar way,
we can compute the likelihood of each silhouette n at any time.

As the diffusion density p(αt, at|αt−1, at−1) in Equation 3.2 we use for
the tracking parameters, x, y, and s the Brownian motion model due to the
absence of a better one. We use the simplifying assumption that the action
parameter a is constant since while assuming that the action does not change
over time. A new silhouette n is selected also in a Gaussian manner, according
to the topological structure computed through isomap.

Once the pdf pt(at) converges to 1 for some action the pdf pt(at) stays
constant and new evidence from novel images is ignored. To be able to take
into account all incoming data, we employ a voting scheme by counting the
number of times the pdf converged to each action and by resetting the prior
for the random variable a to the even distribution.

3.3.3 Experiments

In this section we present qualitative and quantitative results obtained from
our experiments. In these experiments we wanted to investigate the capabili-
ties of our approach for the recognition of actions and the recognition of the
right silhouette in each image of the input video. The results clearly show the
potentials for an effective silhouette and action recognition.

As qualitative experiments we have run our approach on a number of test
sequences recorded outdoors. The test videos show between one and three
individuals walking and running, with partially heavy occlusion and illumina-
tion variations. Figure 3.2 shows a scenario, with a pedestrian walking behind
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Fig. 3.2. This image shows an example of normal occlusion and shadow. The top
image shows the original input image. The bottom left image shows the normal
output from the background subtraction function while the bottom right one shows
the detected silhouette, parameterized according the the detected parameters.

trees, thereby at times being occluded. Since, in spite of the occlusion and
at times heavy noise, e.g., due to trees moving in the wind, the likelihood
measures with the occluded input silhouettes are still the largest in the im-
age, this occlusion does not pose any problems to our approach. In addition,
due to the structure of the silhouette space, we are able to deduce the right
silhouette, even though the visual information coming from the background
subtraction method (Figure 3.2, bottom left) would not be sufficient for a
unique identification of the right pose. image Figure 3.3 shows the same sce-
nario, in a frame where the pedestrian is heavily occluded. Even in this case,
the visual data from the background subtraction function is sufficient to de-
tect the right parameters of the silhouette. Both, action and silhouettes are
identified correctly. In addition, even though the visual information coming
from the background subtraction (Figure 3.3, middle) would suggest a differ-
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Fig. 3.3. This image shows an example of normal occlusion and shadow. The top
image shows the original input image. The bottom left image shows the normal
output from the background subtraction function while the bottom right one shows
the detected silhouette, parameterized according the the detected parameters.

ent pose, the system still detects the correct one. The scenario presented in
Figure 3.4, shows two pedestrians walking towards each other. We deal with
the case where more than one individual is visible by considering the two
individuals as two unrelated recognition problems. For each individual, a sep-
arate set of particles is introduced. When a new region of activity is detected
in the video, the region is checked whether it is likely to be an individual. At
this point we have introduced a conservative threshold value that should al-
low to distinguish human silhouettes from noise. In a quantitative evaluation
we have investigated the correctness of the particle method in matching the
correct silhouette. When the background subtraction is started on an input
video, the particles are initially evenly distributed. Then, the particle filter
usually needed 20–50 frames to find a sufficiently good approximation of the
true density. Before convergence, the selected silhouette is still random. Af-
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Fig. 3.4. This image shows an example of heavy occlusion. The left image shows
the original input image, the middle one the normal output from the background
subtraction function, the right image shows the detected silhouette superimposed.

ter 50 frames and without any occlusion, the silhouette with the maximum
likelihood is the correct one in ≈98% of the cases. In ≈20% of the cases the
ML silhouette was incorrect when e.g., a bush was largely occluding the legs.
However, recovery time was within 5 frames. In case of partial occlusion of the
entire body through, e.g., small trees, reliability degraded between 1% (slight
occlusion) to 10% (considerable occlusion). The silhouette was incorrect in
≈59% of the cases where the legs were fully occluded, e.g., by a car. In the
videos the individual was in average 70 px. high. Reliability increased with
more pixels on the target. The action was correctly identified in 98% of the
cases. However, an interpretation of this result is more complex: The correct-
ness of the detected silhouettes has a direct influence on the recognized action.
By definition, an action is correctly identified if the particle filter converges
and votes for the correct action most of the time. This was the case in most
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of our videos where the average occlusion was sufficiently small. On the other
hand, in a crowded environment, our approach would break down.

3.4 Recognizing Action Primitives by Combining HMMs
with Bayesian Propagation

In this section we want to discuss another approach that extends the Bayesian
propagation for action recognition. In the previous section, we have extended
the joint density function by an action variable which was used as a prior for
the likelihood measurement. In this section, we again extend the joint density
function with an action parameter. Here, however, we will use it as a priori
for the propagation and diffusion step.

In this section, the scenario concerns the recognition of action primitives
from observed complex actions.

There is biological evidence that actions and activities are composed out
of action primitives similarly to phonemes being concatenated into words [17,
43,44].

In this sense, one can define an action hierarchy of action primitives at
the coarsest level, and then actions and activities as the higher abstract levels
where actions are composed out of the action primitives while activities are,
in turn, a composition of the set of actions [3, 35].2

In order to recognize an action performed by an individual, an action hier-
archy makes sense due to the otherwise combinatorial problem. If one follows
the approach of using an action hierarchy, then one of the main problems is
to recover the action primitives from an observed action.

Thus, given a set (or alphabet) of action primitives, we are concerned in
this section with the recovery of the sequence of the action primitives from
an observed action.

In other words, if we have given an alphabet of action primitives P and if
we have given an action S which by definition is a sequence S = a1a2a3 . . . aT

of some length T and composed out of these action primitives from P , then
it is our interest to recover these primitives and their precise order.

This problem is closely related to speech recognition where the goal is to
find the right sequences of phonemes (see Section 3.2). Once we have parsed
and detected the sequence of action primitives in the observed sequence, this
sequence of action primitives could identify the action. (In speech recognition,
the sequence of detected phonemes is used to identify the corresponding word.)

One possibility to recognize then the action from the detected primitives
is to define an action-grammar for each action, based on the action primitives
as the alphabet and to use a parsing approach for recognition, as suggested
in [23,47].

2 In the following, we define the term action as a sequence of action primitive of
arbitrary length.
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In order to take into account possible noise and imperfect data, we base
our approach on Hidden Markov Models (HMMs) [19, 37] and represent our
action primitives with HMMs.

Thus, given a set of action primitives where each action primitive is repre-
sented by an HMM and given an observed sequence S of these action primitives
where

1. The order of the action primitives
2. The duration of each single action primitive and the position of their

boundaries

are unknown, we would like to identify the most likely sequence of action
primitives in the observation sequence S for subsequent parsing.

According to the biological findings, the representation for action recog-
nition is closely related to the representation for action synthesis (i.e., the
motor representation of the action) [17,43,44]. This motivates us to focus our
considerations in this section to actions represented in joint space. Thus, our
actions are given as sequences of joint settings. A further justification for this
approach is that this action representation can then be used, in future work,
to bias 3D body trackers as it operates directly on the 3D parameters that
are to be estimated by the 3D tracker. The focus of this chapter on joint data
is without limiting generality.

In this section, we will recognize the action based on the dynamics. Clearly,
one could also employ the approach presented in Section 3.3. In that case, one
would evaluate the liklihood of a joint setting given the set of joint settings
for a particular action.

3.4.1 Representing and Recognizing Action Primitives
Using HMMs

In order to approach the action recognition problem, we model each of the
action primitives P = {a1, a2, . . . , aN} with a mixture-HMM where each ob-
servation function is a continuous Gaussian mixture with M ≥ 1 mixtures.
The mixture HMMs are trained based on demonstrations of a number of in-
dividuals. The Gaussian mixture are able to represent the variability across
individuals to allow some degree of invariance across different individuals.
The training results into a set of HMMs {λi|i = 1 . . . N}, one for each action
primitive.

Once each action primitive is represented with an HMM, the primitives
can generally simply be recognized with the classical recognition technique
for HMMs by employing a maximum likelihood or a maximum a-posteriori
classifier: Given an observation sequence Ot of an action primitive, and a set
of HMMs λi, the maximum likelihood (ML)

max
i

P (Ot|λi) (3.6)
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identifies the most likely primitive. An alternative to the ML technique is the
maximum a-posteriori (MAP) estimate that allows to take into account the
likelihood of observing each action primitive:

max
i

P (λi|Ot) = max
i

P (Ot|λi)P (λi) , (3.7)

where P (λi) is the likelihood that the action, represented by the HMM λi,
appears.

3.4.2 Recognition with HMMs

In general, the likelihood of an observation for some HMM λi can be com-
puted as

P (O|λi) =
∑
S

P (O,S|λi) (3.8)

=
∑
S

P (O|S, λi)P (S|λi) (3.9)

=
∑
S

T∏
t=0

P (Ot|St, λi)
T∏

t=0

P (St|St−1, λi) . (3.10)

Here, one marginalizes over all possible state sequences S = {S0, . . . , ST } the
HMM λa can pass through.

To apply this technique to our problem directly is difficult as we would
need to know when to evaluate, i.e., at what time steps t we should stop and
do the maximum-likelihood estimation to find the most likely action primitive
that is just now being observed.

Instead of keeping the HMMs distinct, our suggestion is to insert the
“action” a of the HMM λa as a random variable into Equation (3.10) and
to rewrite it as

P (O|a) =
∑
S

P (S0, a0)
T∏

t=1

P (Ot|St, at)P (St, at|St−1, at−1) . (3.11)

In other words, we would like to estimate at each time step the action a
and the state S from the previously seen observations, or, respectively, the
probability of λa being a model of the observed action:

P (ST , aT |O0:T ) = P (S0, a0)
T∏

t=1

P (Ot|St, at)P (St, at|St−1, at−1) (3.12)

The difference in the interpretation becomes more clear when we write Equa-
tion (3.12) in a recursive fashion:
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P (St+1, at+1|O0:t+1)

= P (Ot+1|St+1, at+1)P (St+1, at+1|St, at)P (St, at|O0:t) . (3.13)

This is the classical Bayesian propagation over time. It computes at each
time step t the likelihood of observing the action at while having observed
O0:t. If we ignore the action variable at, then Equation (3.13) explains the
usual efficient implementation of the forward algorithm [19] which allows to
compute the likelihood of an observation, given an HMM. Using the random
variable at, Equation (3.13) defines a pdf across the set of states (where the
state vector St is the concatenation of state vectors of each individual HMM)
and the set of possible actions. The effect of introducing the action a might
not be obvious: using the action a, we do not any more estimate the likelihood
of an observation, given a HMM λa. Instead, we compute at each time step
the probability mass function (pmf) P (St, at|O0:t) of each state and each
identity, given the observations. By marginalizing over the states, we can
compute the pmf P (at|O0:t) for the action at each time step. The likelihood
P (at|O0:t) converges to the most likely action primitive as time progresses and
more data becomes available (see Figure 3.5). From Figure 3.5 it is apparent
that the pmf P (at|O0:t) will remain constant after convergence as one action
primitive will have the likelihood 1 and all other primitive likelihoods have
vanished. Similarly to Section 3.3, we apply a voting scheme that counts the
votes after each convergence and then restarts the HMMs. The states are
initialized with the present observation likelihoods and then propagated with
the transition matrix as usual. Figure 3.6 shows the repeated convergence and
the restarting of the HMMs. In the example shown in Figure 3.6 we have used
two concatenated action primitives, denoted by the green curve with the “+”
and by the blue curve with the “o”, respectively. The first action primitive was
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Fig. 3.5. This image shows an example for a typical behavior of the pmf P (at|O0:t)
for each of the actions a as time t progresses. One can see that the likelihood for
one particular action (the correct one in this example, marked with “+”) converges
to 1 while the likelihoods for the others vanish.
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Fig. 3.6. This image shows an example for a typical behavior of the pmf P (at|O0:t)
as time t progresses. The input data consisted of two action primitives: first, action
primitive “2”, marked with “+”, then, action primitive “3”, marked with “o”. One
can see that until ≈ sample 52 the system converges to action “2”, after sample 70,
the system converges to primitive 3. The length of the first sequence is 51 samples,
the length of sequence 2 is 71 samples.

in the interval between 0 and 51, while the second action primitive was from
sample 52 to the end. One can see that the precise time step when primitive
1 ended and when primitive 2 started cannot be identified. But this does not
pose a problem for our recovery of the primitives as for us the order matters
but not their precise duration. In Figure 3.5 a typical situation can be seen
where the observed data did not give enough evidence for a fast recognition
of the true action.

3.4.3 Experiments

For our experiments, we have used our MoPrim [40] database of human one-
arm movements. The data was captured using a FastTrack Motion capture
device with 4 electromagnetic sensors. The sensors are attached to the torso,
shoulder, elbow and hand (see Figure 3.7). Each sensor delivers a 6D vector,
containing 3D position and 3D orientation thus giving a 24D sample vector
at each time-step (4 sensors with each 6D). The MoPrim database consists
of 6 individuals, showing 9 different actions, with 20 repetitions for each. The
actions in the database are simple actions such as point forward, point up,
“come here”, “stop!”. Each sequence consists of ≈60–70 samples and each
one starts with 5 samples of the arm in a resting position where it is simply
hanging down.

Instead of using the sensor positions directly, we transform the raw 24D
sensor data into joint angles: one elbow angle, one shoulder angle between
elbow, shoulder and torso and a 3D orientation of the normal of this shoulder–
elbow–torso–triangle. The orientation of the normal is given with respect to
the normal of this triangle when the arm is in resting position. All angles are
given in radians. No further processing of the MoPrim data was done.
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Fig. 3.7. This image shows the positions of the magnetic sensor on the human body.

We have carried out several different experiments:

1. In the first test, we tested for invariance with respect to the performing
human. We have trained nine HMM for nine actions. Each of the HMMs
was trained on 6 individuals and all the 20 repetitions of the actions. The
recognition testing was then carried out on the remaining individual (leave-
one-out strategy). The HMMs we use were mixture HMMs with 10 states
and 5 mixtures per state.

2. In this test, we tested for invariance with respect to the variations within
the repetitions. We have trained nine HMMs for nine actions. Each HMM
was trained on all individuals but only on 19 repetitions. The test set
consisted of the 20th repetition of the actions.

3. As a base line reference, we have tested how good the HMMs are able
to recognize the actions primitives by testing action primitive sequences
of length 1. Here, the HMMs were trained as explained under 2 above.
This test reflects the recognition performance of the classical maximum-
likelihood approach.

4. We have repeated the above three experiments after having added
Gaussian noise with zero mean and a standard deviation of σ = 0,
σ = 0.3 and σ = 1 to the training and testing data. As all angles are given
in radians, thus, this noise is considerable.

To achieve a good statistic we have for each test generated 10.000 test actions
of random length ≤ 100. Also, we have systematically left out each individ-
ual (action) once and trained on the remaining ones. The results below are
averaged across all leave-one-out tests. In each test action, the action primi-
tives were chosen randomly, identically and independently. Clearly, in reality
there is a strong statistical dependency between action primitives so that our
recognition results can be seen as a lower bound and results are likely to
increase considerably when exploiting the temporal correlation by using an
action grammar (e.g., another HMM).

The results are summarized in Table 3.1. One can see that the recognition
rates of the individual action primitives is close to the general baseline of the
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Table 3.1. Summary of the results of our various experiments. In the experiments,
the training of the HMMs were done without the test data. We tested for invariance
w.r.t. identity and w.r.t. the action. The baseline shows the recognition results when
the test action was a single action primitives.

Leave-one-Out experiments

Test Noise σ Recognition Result

Identities (Test 1) 0 0.9177
Repetitions (Test 2) 0 0.9097
Baseline (Test 3) 0 0.9417
Identities (Test 1) 0.5 0.8672
Repetitions (Test 2) 0.5 0.8710
Baseline (Test 3) 0.5 0.8649
Identities (Test 1) 1 0.3572
Repetitions (Test 2) 1 0.3395
Baseline (Test 3) 1 0.3548

HMMs. The recognition rates degrade with increasing noise which was to be
expected, however, the degradation effect is the same for all three experiments
(identities, repetition, baseline).

All actions in the action database start and end in a resting pose. To
assure that the resting pose does not effect the recognition results, we have
repeated the above experiments on the action primitives where the rest poses
were omitted. However, the recognition results did not change notably.

3.5 Conclusions

In this chapter we have discussed two approaches for action recognition that
were based on the Bayesian propagation over time. We have used the fact
that the Bayesian framework offers a unified framework to combine observa-
tion knowledge as well as dynamical knowledge and that this is particularly
useful for the action recognition tasks. In the surveillance scenario we have
approached the action recognition task as a pattern recognition task with the
aim to identify at each time-step the silhouette of the human. Each action
gives rise to a set of typical silhouettes. By identifying the silhouette in the
video at each time step, we become able to identify the action. The task of
identifying the silhouette is similar to the tracking task in order to identify
where the silhouette is in the video. On the other hand, the identification of
the action itself is slightly different as the action is assumed to be constant
(an assumption that can be relaxed). Here, we employed a voting scheme
which counts the number of times the observed silhouettes give rise to a par-
ticular action. We have treated the surveillance scenario strictly as a pattern
matching problem as we have not used any dynamic information. The use of
dynamic modes was discussed separately in the context of recovering action
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primitive in observed complex actions. Here, we have modeled the dynamics
with Hidden Markov Models which, being Bayesian themselves, fit nicely into
the classical Bayesian propagation framework as used usually for tracking. For
the recovery, again, a voting scheme was employed which counted the votes
for each action primitive.

The two approaches presented are complementing each other within the
same framework. Clearly, the action primitives could be estimated in a similar
manner as the silhouettes in Section 3.3. Then, we would have exploited the
fact that for a particular arm action, only a specific set of arm poses can ap-
pear. In Section 3.4, these appearances were encoded implicitly in the mixture
models and the actual recognition was carried out based on how these arm
poses changed, i.e., on the dynamics.

From the two presented experiments, one gets the impression that a com-
bination of the two approaches, within the common Bayesian framework, will
lead to a powerful technique for action recognition.
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Summary. For the non-invasive imaging of moving organs, in this chapter, we
investigate the generalisation of optical flow in three-dimensional Euclidean space.
In computer vision, optical flow is dealt with as a local motion of pixels in a pair
of successive images in a sequence of images. In a space, optical flow is defined
as the local motion of the voxel of spatial distributions, such as x-ray intensity
and proton distributions in living organs. Optical flow is used in motion analysis
of beating hearts measured by dynamic cone beam x-ray CT and gated MRI to-
mography. This generalisation of optical flow defines a class of new constraints for
optical-flow computation. We first develop a numerically stable optical-flow compu-
tation algorithm. The accuracy of the solution of this algorithm is guaranteed by Lax
equivalence theorem which is the basis of the numerical computation of the solution
for partial differential equations. Secondly, we examine numerically the effects of the
divergence-free condition, which is required from linear approximation of infinitesi-
mal deformation, for the computation of cardiac optical flow from images measured
by gated MRI. Furthermore, we investigate the relation between the vector-spline
constraint and the thin plate constraint. Moreover, we theoretically examine the
validity of the error measure for the evaluation of computed optical flow.

4.1 Introduction

William Harvey (1578–1657) is the first medical doctor who had discovered
and had correctly described the mechanism of the circulation of the blood
in the cardiac system of animals Furthermore, he had clarified the physical
function of the heart [1]. In Harvey’s time anatomical surgery was the only
way to experiment and observe the function of the beating heart of animals.
Nowadays, using mathematics, physics, and computer sciences, we can observe
beating hearts in living organs non-invasively. To model the functions of a
beating heart from the viewpoint of biomechanics, we are required physical
measurements of the motion of each point of the heart wall in living organs.

Optical flow is a non-interactive and non-invasive technique for the detec-
tion of motion of an object on a plane and in a space. For medical study and

81
B. Rosenhahn et al. (eds.), Human Motion – Understanding, Modelling, Capture, and

Animation, 81–104.
c© 2008 Springer.



82 Y. Kameda and A. Imiya

diagnosis of moving organs in the human body, optical flow of tomographic
images provides a fundamental tool [2, 3]. The motion of each point in a se-
quence of temporal images is computed as optical flow in computer vision.
The three-dimensional version of optical flow is used for analysis of motion of
each point on a heart.

The non-invasive imaging of moving organs is achieved by MRI, x-ray CT,
and ultrasonic CT. Usually the signal-to-noise ratio of non-invasive imaging
is low. Therefore, we are required to develop numerically accurate methods of
the optical-flow computation for tomographic images.

Variational methods provide a unified framework for image analysis, such
as optical flow computation, noise removal, edge detection, and in-painting
[4–7] using the variational principle. The fundamental nature of the varia-
tional principle governed by the minimisation of the energy functionals for the
problems allows us to describe algorithms for the problems of image analysis
as the computation of the solution of Euler-Lagrange equations, which are
partial differential equations. In this chapter, we investigate the generalisa-
tion of optical flow [8–11] in three-dimensional Euclidean space. In computer
vision, optical flow is dealt with as the local motion of pixels in a pair of suc-
cessive images for a sequence of images. Optical flow is used in motion analysis
of a three-dimensional beating heart measured by dynamic cone-beam x-ray
CT and gated MRI tomography. In a three-dimensional space, optical flow is
defined as the local motion of voxels of spatial distribution such as x-ray in-
tensity and proton distributions in living organs. This generalisation of optical
flow defines a class of new constraint for optical-flow computation which al-
lows us to detect the motions on the segment-boundary of a three-dimensional
deformable object.

We first show some mathematical relations between the Horn-Schunck
constraint and Nagel-Enkelmann constraint in three-dimensional Euclidean
space. Moreover, we analyse the numerical schemes of optical-flow computa-
tion employing Lax equivalence theorem. Lax equivalence theorem guarantees
the stability of algorithms and accuracy of solutions computed by numerical
schemes for numerical solving partial differential equations, that is, with Lax
equivalence theorem, a numerically computed solution converges to the solu-
tion of the equation by decreasing the size of grids for numerical computation.
Therefore, if an algorithm for optical-flow computation is expressed as a nu-
merical computation of a partial differential equation with the condition which
satisfies Lax equivalence theorem, the solution computed by the algorithm is
accurate and stable. Secondly, we aim, in this chapter, to examine numerically
the effects of the divergence-free condition [14] for the computation of cardiac
optical flow from images obtained by gated MRI tomography.

From the viewpoints of elastic deformation of the heart wall, we have an
exact incompressible condition [13], such that

det(I + ∇u) = 1, ∇u = (∇u,∇v,∇w) (4.1)
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for a small displacement vector u = (u, v, w)� in R.3 If |u| 
 1, that is, small
displacement gradient approximation or small strain and rotation approxima-
tion [13, 14], we have the relation

det(I + ∇u) = 1 + divu + O(|u|2). (4.2)

Therefore, assuming that the deformation is locally infinitesimal, we have the
relation

∇ · u = divu (4.3)

as a linear approximation of the condition in Equation (4.1), where the vector
u = (u, v, w)� is optical flow of a voxel in three-dimensional images. This
condition is used as an additional constraint for optical-flow computation
[13,14]. Then, we have a convex minimisation problem [8–10,15],

J(u, α, β) = J(u, α) + β|divu|2, (4.4)

where the first term of the right-hand side of the equation is the usual lin-
ear or non-linear optimisation functional combining the data term and the
regularisation term with a positive parameter α. A typical and traditional
expression1 of J(u, α) [8–10] is

J(u, α) =
∫
R3

|∇f�u + ft|2dx + αN(u,u)dx. (4.5)

As we will show in the next section, the constraint ∇·u = 0 in Equation (4.3)
and the Horn-Schunck regularisation term,

NHS(u,u) = tr(∇u∇u�). (4.6)

are dependent regularisation conditions. This analytical property means that
the Horn-Schunck condition minimises the condition divu and the other
smoothing criteria simultaneously. Furthermore, as an extension of the con-
straint to the higher order derivatives, we show the mathematical relation
between the vector spline constraint, which was introduced for the compu-
tation of smooth optical flow, [20, 21] and thin plate constraint, which was
introduced for the computation of optical flow on the deformable boundary

1 Recently, for

Ψ(s) =
√

s2 + ε2, s.t. 0 < ε � 1,

the criterion in the form∫
R3

Ψ(|∇f�u + ft|)dx + αΨ(tr∇u∇u�)dx,

is proposed [15]. This minimisation problem allows us to detect a smooth optical-
flow field. We can deal with the three-dimensional version this minimisation prob-
lem.
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in three-dimensional Euclidean space. Moreover, we theoretically examine the
validity of the error measure for the evaluation of computed optical flow.

We introduce the three-dimensional version of the Nagel-Enkelmann cri-
terion and its dual criterion. Since Nagel-Enkelmann criterion allows us to
detect boundary motion, the dual criterion allows us to detect the motion
on the boundary of segments. Next we derive a numerical criterion for the
convergence of optical-flow computation algorithms with the divergence-zero
condition. We also show numerical results for the Horn-Schunck, the Nagel-
Enkelmann, and our new criteria.

4.2 Optical Flow in a Space

For a spatio-temporal image f(x, t) defined in a spatio-temporal space R3 ×
R+, the total derivative with respect to time t is given as

d

dt
f = ∇f�u +

∂f

∂t

dt

dt
, ∇f = (fx, fy, fz)� (4.7)

where u = ẋ = dx
dt is the motion of each point x in R3. The motion constraint

d

dt
f = 0 (4.8)

implies that the motion vector u = (u, v, w)� of the point x is the solution of
the singular equation,

∇f�u + ft = 0. (4.9)

To solve this singular equation, the regularisation

J =
∫
R3

{
|∇f�u + ft|2 + αN(u,u)

}
dx (4.10)

is employed, where N(x, y) is an appropriate positive bilinear form and α is
the positive regularisation parameter.

If the regulariser is in the form

N(u,u) = tr(∇uN∇u�) (4.11)

for an appropriate positive definite matrix N , where ∇u is the vector gradient
of u, that is, ∇u = (∇u,∇v,∇w), the Euler-Lagrange equation of the energy
functional defined in Equation (4.10) is

∇�N∇u =
1
α

(Su + ft∇f), S = ∇f∇f� (4.12)

where S is the structure tensor of f(x, y, z, t) at time t.
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4.3 Generalised Regularisation Term

4.3.1 Orthogonal Decomposition of Regulariser

It is possible to define Nagel-Enkelmann term for the three dimensional prob-
lem by

N =
1

|trS| + 3λ2
((trS)I − S + 2λ2I)

=
1

|trS| + 3λ2
(T + 2λ2I)

=
1

|∇f |2 + 3λ2

⎛⎝ f2
y + f2

z + 2λ2 −fxfy −fxfz

−fxfy f2
x + f2

z + 2λ2 −fyfz

−fxfz −fyfz f2
x + f2

y + 2λ2

⎞⎠ (4.13)

where
T = S2 − I = trS × I − S, (4.14)

such that TS = ST = 0, as a generalisation of Nagel-Enkelman criterion for
two-dimensional images [9].

Now, we mathematically define the dual constraint matrix N⊥ of the
Nagel-Enkelmann regulariser as

N + N⊥ = I, (4.15)

In three-dimensional Euclidean space the explicit expression of the matrix
N⊥ is

N⊥ =
1

|trS| + 3λ2

(
S + λ2I

)
=

1
|∇f |2 + 3λ2

⎛⎝ f2
x + λ2 fxfy fxfz

fxfy f2
y + λ2 fyfz

fxfz fyfz f2
z + λ2

⎞⎠ . (4.16)

For matrices N and N⊥, we have the relations

N∇f =
2λ2

|∇f |2 + 3λ2
∇f, N∇f⊥ =

|∇f |2 + 2λ2

|∇f |2 + 3λ2
∇f⊥, (4.17)

N⊥∇f =
|∇f |2 + λ2

|∇f |2 + nλ2
∇f, N⊥∇f⊥ =

λ2

|∇f |2 + nλ2
∇f⊥. (4.18)

Therefore, it is possible to derive the eigenvalue decompositions of N and N⊥

as
N = Rdiag(n1, n2, n3)R�, N⊥ = Rdiag(n⊥

1 , n
⊥
2 , n

⊥
3 )R� (4.19)
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for R = (r1, r2, r3)�, where

r1 =
∇f

|∇f | , r�
k r1 = 0, |rk| = 1 (4.20)

for k = 2, 3 and

n1 =
2λ2

|∇f |2 + 3λ2
, n2 = n3 =

|∇f |2 + 2λ2

|∇f |2 + 3λ2
, (4.21)

and

n⊥
1 =

|∇f |2 + λ2

|∇f |2 + 3λ2
, n⊥

2 = n⊥
3 =

λ2

|∇f |2 + 3λ2
. (4.22)

These decompositions of the matrix N lead to the conclusion that 0 < ni < 1
and 0 < n⊥

i < 1 for i = 1, 2, 3.

4.3.2 Separation of Motion in a Space

An infinitesimal motion in a space is decomposed into a translation and a
small-angle rotation around this translation vector [19]. This geometric prop-
erty of motion in a space implies that surface motion of deformable object in a
space is decomposed into motions in the normal direction and on the tangent
plane at each point as shown in (a)and (b) of Figure 4.1.

Since the principal minor eigenvector of the matrix N is the gradient ∇f ,
Nagel-Enkelmann criterion enhances the flow parallel to ∇f and relaxes noise
on the plane perpendicular to ∇f . Conversely, the regulariser with matrix N⊥

enhances the vector perpendicular to ∇f and relaxes noise in the direction of
∇f⊥. These geometric properties of matrices N and N⊥ allow us to decom-
pose flow vectors into two vectors which are parallel to ∇f and perpendicular
to ∇f . In a three-dimensional space, the dimension of tangent space spanned
by vectors perpendicular to ∇f is 2. Furthermore, the zero-cross set of the
gradient map |∇f |, that is,

E(x) = {x | |∇f | = 0},

is the the edge-curve set of segments. Therefore, the portion of the optical-
flow vector on the tangent plane at each point is approximately the motion on
the surface boundary of a deformable object. This geometrical relation of the
region boundary implies that regularisers tr(∇uN∇u�) and tr(∇uN⊥∇u�)
allow us to detect the normal and tangent motions of the deformation of an
object surface.

4.3.3 Vector Regularisation Term

As described in section 1, for the three-dimensional optical-flow computation
problem, the additional assumption such
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(a) (b)

∇ f

∇ u

P ∇ u

plane n = ∇ f

orthogonal projection

(c)

∇ f

∇ u
projection

P ∇ u

(d)

Fig. 4.1. Motion of boundary in a space. Surface motion of deformable object in
a space is decomposed into motions in the normal direction (a) and on the tangent
plane (b) at each point (c) and (d) show the geometrical relations among the gradient
of gray-values, and the vectors Nu and N⊥u in a three-dimensional space.

divu = 0 (4.23)

is considered. Therefore, our regularisation problem becomes∫
R3

{
|∇f�u + ft|2d + αtr(∇uN∇u�) + β|divu|2

}
dx. (4.24)

The Euler-Lagrange Equation of the energy functional defined in Equation
(4.24) is

∇�N∇u =
1
α

(∇tf)�v∇f +
β

α
∇∇�u (4.25)

for v = (u�, 1)�. Therefore, the embedding of the Euler-Lagrange equation
to the parabolic PDE is

∂

∂τ
u = ∇�N∇u − 1

α
(∇tf

�v)∇f − β

α
∇∇�u. (4.26)

Next, we analyse mathematical property of an additional regularisation
term. Setting
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shu =

√√√√ 3∑
i=1

(
∂

∂xi
ui −

∂

∂xi+1
u(i+1)

)2

+
(

∂

∂xi
ui +

∂

∂xi+1
u(i+1)

)2

, (4.27)

where u4 = u1 and x4 = x1 for u = (u, v, w)� = (u1, u2, u3)� and u =
(x, y, z)� = (x1, x2, x3)�, respectively, we have the relation

tr(∇u∇u�) =
1
2
(|divu|2 + |rotu|2 + |shu|2). (4.28)

Analytically, Equation (4.27) implies that the optical-flow vector u is a con-
tinuous function at all points with respect to all variables. The constraints

dviu = 0, rotu = 0, shu = 0, (4.29)

derive the regulariser

JGA = β1(dviu)2 + β2|rotu|2 + β3sh
2u = w�Qw (4.30)

for a block symmetry matrix Q and the vector

w = vec(∇u) =

⎛⎝∇u
∇v
∇w

⎞⎠ .

This relation implies that the Horn-Schunck regulariser tr(∇u∇u�) min-
imises all of dviu, rotu, and shu selection β1 = β2 = β3 in Equation (4.30).
Furthermore, we have the relation

αtr(∇u∇u�) + βdivu =
(

1
2
α + β

)
divu +

1
2
α|rotu|2 +

1
2
αsh2u. (4.31)

This relation implies that the term tr(∇u∇u�) and divu are mathematically
dependent terms.2

4.4 Numerical Scheme

4.4.1 Convergence Analysis

For the discretisation, we adopt Forward-Time Centred-Space, FTCS in the
abbreviated form, such as
2 On a two-dimensional plane, for planar optical flow u = (u, v)�.

rotu =
∂

∂x
v − ∂

∂y
u

and

sh2u =

(
∂

∂x
u − ∂

∂y
v

)
+

(
∂

∂x
v − ∂

∂y
u

)
.

Therefore, shu geometrically expresses the discontinuity of the vector function
u(x, y) = (u(x, y), v(x, y))� on each point.
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∂u

∂x
=

un(i + h) − un(i− h)
2h

, (4.32)

∂2u

∂x2
=

un(i + h) − 2un(i) + un(i− h)
h2

, (4.33)

∂2u

∂x∂y
=

1
4h2

{un(i + h, j + h) − un(i− h, j + h)

−un(i + h, j − h) + un(i− h, j − h)} (4.34)
∂u

∂τ
=

un+1(i) − un(i)
Δτ

, (4.35)

where n, h, an Δτ are the iteration number, the unit length of the spatial
grid, and unit length of the time grid, respectively.

We analyse the convergence property for the case of N = I. Setting L
to be the discrete Laplacian with an appropriate boundary condition, the
discrete version of Equation (4.12) becomes,

Luijk =
1
α

Sijkuijk +
1
α
ftsijk, S = sijks�

ijk, sijk = ∇f(i, j, k). (4.36)

For optical flow vectors

uijk = (u(i, j, k), v(i, j, k), w(i, j, k))�, (4.37)

in a space, we define the permutation matrix P as

P vec(u111,u112, · · · ,uMmM ) = vec

⎛⎜⎜⎜⎝
u�

111

u�
112
...

u�
MMM .

⎞⎟⎟⎟⎠ (4.38)

Equation (4.36) is a point-wise equation. Therefore, for vector functions x,
setting

x :=

⎛⎜⎜⎜⎝
x111

x112

...
xMMM

⎞⎟⎟⎟⎠ (4.39)

we have the matrix equation

Lu =
1
α

Su +
1
α
fts (4.40)

for

L := I3 ⊗ P�(D2 ⊗ I ⊗ I + I ⊗ D2 ⊗ I + I ⊗ I ⊗ D2)P , (4.41)
S = Diag(S111,S112, · · · ,SMMM ). (4.42)
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P is the permutation matrix of Equation (4.38).
The matrix D2 is tridiagonal matrix [16–18] such that

D2 =

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −2

⎞⎟⎟⎟⎟⎟⎠ ,

for Dirichlet boundary condition, [17] such that

D2 =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −1

⎞⎟⎟⎟⎟⎟⎠ ,

for von Neumann boundary condition, and

D2 =

⎛⎜⎜⎜⎜⎜⎝α
⎛⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −1

⎞⎟⎟⎟⎟⎟⎠+ β

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 −2

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
for the third kind boundary condition.

Furthermore, the matrix D1 is also tridiagonal matrix such that

D1 =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 · · · 0 0
1 0 −1 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 1 0 −1
0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The operation ∂
∂τ is expressed as

∂

∂τ
=

1
Δτ

(Iun+1 − Iun)

in the matrix form.
For a positive constant Δτ , setting

A = (I +
Δτ

α
S), B = (I + ΔτL), c = −Δτ

α
fts, (4.43)
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Equation (4.36) becomes
Au = Bu + c. (4.44)

where A� = A and B� = B. Setting ρ(M) to be the spectrum of the Matrix
M , we have the relation ρ(A) > 1. Furthermore, we have the next theorem.

Theorem 1. We have the relation ρ(A) > 1. If ρ(B) ≤ 1, the iteration

Au(m+1) = Bu(m) + c (4.45)

converges to the solution of Equation (4.40) [18], that is,

lim
m→∞u(m) = arg

{
u|Lu =

1
α

(Su + fts)
}
. (4.46)

4.4.2 Convergence Condition

Setting U and Λ to be the discrete cosine transform matrix and the diagonal
matrix respectively, we have the relation

L = UΛU�, (4.47)

Substituting this relation to

ρ (I + ΔτL) < 1 (4.48)

we have the relation
ρ
(
U (I + ΔτΛ) U�

)
< 1 (4.49)

Then, finally we have the convergence condition

Δτ

h2
<

1
6
, (4.50)

since
ρ (I + ΔτΛ) = max

i
|1 + Δτλi| < 1 (4.51)

and − 4·3
h2 ≤ λi ≤ 0. For

D1 =

⎛⎝D1 ⊗ I ⊗ I
I ⊗ D1 ⊗ I
I ⊗ I ⊗ D1

⎞⎠ , D1
∗

=
(
D1 ⊗ I ⊗ I, I ⊗ D1 ⊗ I, I ⊗ I ⊗ D1

)
(4.52)

and

N =Diag(N111,N112, · · · ,NMMM ), N⊥=Diag(N⊥
111,N

⊥
112, · · · ,N⊥

MMM ),
(4.53)

setting
M = PNP , M⊥ = PN⊥P , (4.54)
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we have the relation

M = I3 ⊗ D1
∗
MD1, M⊥ = I3 ⊗ D1

∗
M⊥D1. (4.55)

Using diagonal matrices Λ and Λ⊥, and the orthogonal matrix R such
that

N = RΛR�, N⊥ = RΛ⊥R� (4.56)

we define
L̂ = D̂1

�
D̂1, L̂⊥ = D̂1

�
⊥D̂1⊥ (4.57)

where
D̂1 = (Λ)

1
2 R, D̂1 = (Λ⊥)

1
2 R, (4.58)

Then, we have the relation

B = I + ΔτL̂, B = I + ΔτL̂⊥ (4.59)

for the Nagel-Enkelmann and orthogonal Nagel-Enkelmann constraints, re-
spectively. For symmetry matrices N and N⊥, eigenvalues are positive and
less than one, that is, 0 < ni < 1 and 0 < n⊥

i < 1, for λ �= 0, we have
the inequalities ρ(N) < 1 and ρ(N⊥). These algebraic properties yield that
inequalities

ρ(I + ΔτL̂) < 1, ρ(I + ΔτL̂⊥) < 1. (4.60)

if
ρ(I + ΔτL) < 1. (4.61)

Therefore, our numerical schemes for the Horn-Schunck, Nagel-Enkelmann,
and the orthogonal Nagel-Enkelmann regularisers converge to unique solu-
tions.

4.4.3 Parameter Tuning

Tuning of the Regularisation Parameter

For the matrix
Aijk = I +

1
α

Sijk

we have the relation

A−1
ijk =

1
1 + 1

α trSijk

(I +
1
α

T ijk), (4.62)

where
T ijk = trSijk × I − Sijk.

For Aijk and A−1
ijk, we have the relation

Aijk∇fijk = (1 +
1
α
trSijk)∇fijk, Aijk∇f⊥

ijk = ∇f⊥
ijk, (4.63)
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and
A−1

ijk∇fijk =
1

1 + 1
α trSijk

∇fijk, A−1
ijk∇f⊥

ijk = ∇f⊥
ijk, (4.64)

These relations imply that for the stable computation of A−1, we should select
α as

O(α) = O(ρ(S)) = O(|∇f |2max). (4.65)

This algebraic property leads to the next assertion.

Assertion 1 The order of α is the same order as that of |∇f |2 to achieve
accurate computation of optical flow.

The embedding of the Euler-Lagrange equation in the parabolic PDE is

∂

∂τ
u = ∇�N∇u − 1

α
Fv, v =

(
u
1

)
, (4.66)

where
F = ∇f∇tf = (S, ft∇f), (4.67)

for ∇tf = (fx, fy, fz, ft)�. The trace of the principal maximum square matrix
of F is trS = |∇f |2. Therefore, if the order of α is the same as that of |∇f |2,
the second term affects the computation.

Tuning of the Relaxation Parameter

Since the rank of matrix S = ∇f∇f� is one, we deal with the average of S,

Σ =
1

|Ω(x)|

∫
Ω(x)

Sdx, (4.68)

in the neighbourhood of the point x instead of S. Then, the averaged Nagel-
Enkelmann criterion becomes

N =
1

trΣ + 3λ2
((trΣ)I − T + 2λ2I). (4.69)

This matrix is numerically stable compared with the original Nagel-
Enkelmann criterion, since Σ is a smoothed version of S. Furthermore,
the orthogonal smoothed Nagel-Enkelmann regulariser becomes

N⊥ =
1

trΣ + 3λ2

(
Σ + λ2I

)
. (4.70)

Using this the smoothed Nagel-Enkelmann regulariser, we analyse geometric
properties of this matrix. For

Σui = t2i ui, i = 1, 2, 3, (4.71)
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where t21 ≥ t22 ≥ t23 ≥ 0, setting

Λ = Diag(t21, t
2
2, t

2
3), U = (u1,u2,u3) , (4.72)

the Nagel-Enkelmann criterion is expressed as

N = UDU�, D = Diag(f(t1), f(t2), f(t3)), (4.73)

where

f(x) = 1 − x2 + λ2

trΣ + 3λ2
. (4.74)

If

f(x) =
x2 + λ2

trΣ + nλ2
, (4.75)

we have the orthogonal Nagel-Enkelmann criterion.
From Equation (4.74), we have the relations

lim
λ→0

f(x) = 1 − t2i
trΣ

, lim
λ→∞

f(x) = 1 − 1
3
. (4.76)

These relations show that for large λ, the Nagel-Enkelmann criterion is unaf-
fected by the structure tensor Σ and converges to a general the Horn-Schunck
criterion. Conversely, for small λ, the Nagel-Enkelmann criterion is uniformly
affected by the structure tensor S. The second relation of Equation (4.76)
shows that the Horn-Schunck criterion with the dimension factor is

VHS(∇u) =
2
3
tr∇u∇u� (4.77)

Furthermore, the orthogonal the Horn-Schunck criterion is linear to the orig-
inal criterion, that is,

VHS� =
1
3
tr∇u∇u� =

1
3
VHS . (4.78)

Moreover, the first relation of Equation (4.76) shows that for large λ2, Nagel-
Enkelmann constraint becomes

VNE∞ =
3
2

(
VHS − 1

trΣ
VHS

)
. (4.79)

This analytical property means that if trT is large, the criterion is linear to
the Horn-Schunck criterion. This means that for a high-contrast image the
Nagel-Enkelmann criterion with large parameter λ is approximately equiva-
lent to the Horn-Schunck criterion. Therefore, for low contrast images with
a moderate value of parameter λ, we can obtain sufficient results using the
Nagel-Enkelmann criterion. From Equation (4.74), for the preservation of the
positive semidefinite condition on the matrix N , the relation
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1 >
t2i + λ2

trΣ + 3λ2
, i = 1, 2, 3 (4.80)

is derived. This inequality implies the relation

4
2
t21 < λ2, (4.81)

since trΣ ≤ 3max t2i .

4.5 Numerical Examples

Figures 4.2, 4.3, and 4.4 show examples of optical flow fields computed by the
Horn-Schunck, the Nagel-Enkelmann, and the orthogonal Nagel-Enckelmann
regularisers, respectively. For each regulariser, we show results for α = 105,
and α = 5 × 105. These values were determined to balance the orders of the
diffusion term and the reaction term of diffusion-reaction equation. Roughly
speaking, the parameter α is of the same order as that of |∇f |2, since the
parameter α is the denominator of the reaction term.

As expected, results in Figure 4.3 show motion on the boundary of
the heart. Furthermore, as the parameter α increases the results becomes
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Fig. 4.2. Optical flow computed by Horn-Schunck regulariser for Δτ
h2 = 0.166 From

top to bottom, results for α = 105, and α = 5 × 105, respectively.
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Fig. 4.3. Optical flow computed by Nagel-Enkelmann regulariser for Δτ
h2 = 0.166

and λ = 1. From top to bottom, results for α = 105, and α = 5 × 105, respectively.
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Fig. 4.4. Optical flow computed by the orthogonal Nagel-Enkelmann regulariser for
Δτ
h2 = 0.166 and λ = 1. From top to bottom, results for α = 105, and α = 5 × 105,
respectively.

smoother. Therefore, the parameter α acts as a scale in linear scale analysis.
Specially for α → ∞, the reaction term disappears and a smoothed vector
field is computers as optical flow.

With the divergence-free condition, the matrix D2 of Equation (4.41) is
replaced by

E := D2 +
β

α
K, K =

⎛⎜⎝
∂2

∂x2
∂2

∂xy
∂2

∂xz
∂2

∂xy
∂2

∂y2
∂2

∂yz
∂2

∂xz
∂2

∂yz
∂2

∂z2

⎞⎟⎠ . (4.82)

For convergence analysis of the optical-flow computation with the divergence-
zero condition, we examine the relation between the ratio β/α and the grid
condition Δτ/h2, assuming that h = Δx = Δy = Δz. For the numerical
evaluation, we used the image sequence provided from Professor John Barron
and Roberts Research Institute at the University of Western Ontario [12]. This
is an image sequence of 20 frames. An image in this sequence is 1.25mm3 in
spatial resolution. 256 × 256 × 75 in size.

We have evaluated the norm |un+1 − un| for each point in 3D image. For
the measure

En =
maxi,j,k |un+1

i,j,k − un
i,j,k|2

|ui,j,k|n+1
, (4.83)

if En < 10−3, we concluded the computation converges, and if

En > 2min
i<n

Ei, (4.84)

the computation does not converge. We used frames 1 and 2 of MRI 5 phase
images. Specks of the computer used in our numerical evaluation are listed in
Table 4.1.

If we assume that non-diagonal values of the matrix K are small, that is,
uαβ , vαβ , and wαβ , for α, β ∈ {x, y, z} are sufficiently small, we can approxi-
mate the matrix K of Equation (4.82) as
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Table 4.1. Specks of PC.

CPU Intel Xeon 3.06GHz

Main Memory Size 4 GB
OS turbolinux 10 Desktop
HDD Size 100 GB
Program Language C++
Compiler GCC 3.3.1
Option -O3 -march=pentium4 -mfpmath=sse
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Fig. 4.5. Relation between β/α and Δτ/h2. (a) Curve derived by numerical com-
putation. (b) Curve derived by the small-coupling-term assumption.

K :=

⎛⎜⎝ ∂2

∂x2 O
∂2

∂y2

O ∂2

∂z2

⎞⎟⎠ . (4.85)

This assumption is valid if the effects of coupling terms of the system of
diffusion-reaction equations for the optical-flow computation are small. The
condition that the spectral radius of this matrix is smaller than 1 is

3
Δτ

h2
+

β

α

Δτ

h2
<

1
2

(4.86)

In Figure 4.5 (b), we show both curves defined by (4.86) and derived by
numerical computation. These results show that the effects of the coupling
terms are sufficiently small if Δτ/h2 satisfies the convergence property for the
numerical equation.

Figure 4.5 shows the relation between β/α and Δτ/h2. (a) shows curve
derived by numerical computation. (b) shows curve derived by the small-
coupling-term assumption. Figure 4.6 shows the curves for Nagel-Enkelmann
and the orthogonal Nagel-Enklemann criteria in (a) and (b), with the same
assumptions, respectively. These results for the Nagel-Enkelmann and the
orthogonal Nagel-Enklemann criteria show that the effects of the coupling
terms are small if the grid condition Δτ/h2 satisfies the convergence property
for the numerical equation.
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Fig. 4.6. Relation between β/α and Δτ/h2. (a) Curve for Nagel-Enkelman
constraint and the divergence-zero condition. (b) Curve for orthogonal Nagel-
Enkelmann constraint and the divergence-zero condition.
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Fig. 4.7. Optical flow computed for β = 0. We set Δτ
h2 = 0.166. From top to

bottom in the left, results for Horn-Schunck, Nagel-Enkelmann, and the orthogonal
Nagel-Enkelmann criteria, We set α = 5 × 105, λ = 1, and Δτ

h2 = 0.133. With the
Divergence-zero term for β/α = 0.5. From top to bottom in the light, results for
Horn-Schunck, Nagel-Enkelmann, and the orthogonal Nagel-Enkelmann criteria, We
set α = 5 × 105 and λ = 1.
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Figure 4.7 left shows optical flow computed for β = 0 with Δτ/h2 = 0.133.
From top to bottom, results for the Horn-Schunck, Nagel-Enkelmann, and
the orthogonal Nagel-Enkelmann criteria, are shown. We set α = 5× 105 and
λ = 1.

Figure 4.7 right shows optical flow computed for β/α = 0.5, with Δτ/h2 =
0.133. From top to bottom, results for the Horn-Schunck, Nagel-Enkelmann,
and the orthogonal Nagel-Enkelmann criteria, are shown. We set α = 5× 105

and λ = 1.
These results show that, without the divergence-zero term, it is possible

to compute stable optical flow. Furthermore, optical flow computed by the
orthogonal Nagel-Enkelmann constraint allows to detect motion on the surface
of a beating heart.

4.6 Validity of Error Analysis

As described in the previous section, the condition defined in Equation (4.50)
satisfies Lax equivalence theorem. Lax equivalence theorem guarantees the
stability and accuracy of the numerical scheme for solving numerically partial
differential equations. Therefore, starting from the zero vector, the iteration
form of Equation (4.45) converges to the solution of the Euler-Lagrange equa-
tion, which minimises the Hamiltonian of the optical flow. This numerical
property implies that computational results in the examples are accurately
and stably computed. Therefore, accuracy and stability of the solution only
depend on the numerical schemes. In the other words, numerical schemes de-
termine the accuracy and stability of the computed solution. This property
means that optical flow is reliable if an computation algorithm is carefully
elected and implemented. As analysed in the previous section, our algorithm
derives accurate and stable solution.

In traditional researches [10, 11], the accuracy and stability of algorithms
were evaluated by statistical analysis for the difference between the computed
result and the ground truth of flow vector, which was pre-computed from
a synthetic image sequence. A traditional measure for the evaluation of the
optical-flow computation algorithms is the angle between the computed result
and the ground truth at each point in the images. In this section, we math-
ematically analyse the validity of this measure and develop a new measure
which is computable without the ground truth pre-computed from synthetic
image.

For an accurate algorithm, we can assume that |u| ∼= |u∗|, where u and u∗

are the ground truth and the computed flow by an algorithm. Setting |u| = a,
we have the relation

|u − u∗|2 ∼= 2(a2 − u�u∗). (4.87)

Since
u�u∗

a2
= cos ∠[u,u∗], (4.88)



100 Y. Kameda and A. Imiya

where ∠[u,u∗] is the angle between vectors u and u∗, and

cos θ ∼= 1 − 1
2
θ2

for a small θ, we have an approximate relation

cos−1 ∠[u,u∗] ∼= |u − u∗|
|u| . (4.89)

The relation shows that the angle between the ground truth and the computed
one is an approximation of the absolute error of computed optical flow.

For the computation of Equation (4.89), we are required to prepare an ap-
propriate synthetic image. Therefore, we derive a criterion without the ground
truth. Setting v = (u�, 1)� and v∗ = v+ε for ε = (δ, 0)�, where δ = (u∗−u),
we have

ε = |(m�v∗)n| =
|∇f�u∗ + ft|√

(|∇f |2 + f2
t )

, (4.90)

where m = ∇tf
|∇tf | . Since the solution of the data term of the optical-flow

computation is ∇tf
�v = 0, the vector ((n�v∗)n) is the error in the di-

rection of the vector ∇tf . Furthermore, if u ∼= u∗ and |δ| 
 1, we have
the relations ε ∼= |u − u∗| and θ ∼= ε

|u| . However, for the computation of
Equation (4.90), we are not required to prepare any ground truth computed
from a synthetic image. This mathematical property implies that the error
measure defined by Equation (4.90) is suitable for the comparison of the re-
sults computed from real images. These criteria are suitable for the evaluation
of two-dimensional optical-flow computation algorithms, since the difference
in the directions characterised by the angles between two vectors.

For the evaluation of the three-dimensional optical-flow computation al-
gorithms, we are required to compute the covariance of the errors in a three-
dimensional space, since flow vectors are three-dimensional vectors. For this
purpose, we are required to compute

σ =
1
n

∑
δδ�, δ = u∗ − u (4.91)

for a large number of synthetic image sequences.

4.7 Second Order Constraint Problem

In this section, we discuss some perspectives for optical-flow computation.
Optical flow of images defines the vector field. For the interpolation of the
vector field, the solution of the minimiser,

Jv(u) =
∫
R3

γ1|∇divu|2 + γ2|∇rotu|2dx (4.92)
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for u(xi) = ui, where (xi,ui) are samples of the vector field, derives vector
spline. In a three-dimensional space, the gradient operation in the second
term of Equation (4.92) is computed as the vector gradient, that is, for vector
rotu = (v1, v2, v3)�, ∇rotu = (∇v1,∇v2,∇v3).

Using this criterion, the criterion

Ev(u) = Eo(u) + Jv(u) (4.93)

is introduced [13,14,20,21]. The Euler-Lagrange equation of this minimisation
problem is PDE with fourth-order spatial derivation.

Setting Hu to be the Hessian matrix of the vector field u = (u, v, w)�,
which is defined as

Hu = diag(Hu,Hv,Hw) (4.94)

we define the second order constrain as3

J2(u) =
∫
R3

(trHuH�
u)dx. (4.95)

For trHuH�
u, we have the relation

trHuH�
u = |∇divu|2 + |∇rotu|2 + 2h2(u) + 2k2(u) (4.96)

for

h2(u) =
∣∣∣∣ vxy uxy

Δxyv Δxyu

∣∣∣∣+ ∣∣∣∣ wxy vxy

Δyzw Δyzv

∣∣∣∣+ ∣∣∣∣ uxy wxy

Δzx Δzxw

∣∣∣∣ (4.97)

k2(u) = divs, s =
(∣∣∣∣ vy wy

vz wz

∣∣∣∣ , ∣∣∣∣wz uz

wx ux

∣∣∣∣ , ∣∣∣∣ux vx

uy vy

∣∣∣∣)�
(4.98)

where

Δαβ =
∂2

∂α2
+

∂2

∂β2
, Δαβ =

∂2

∂α2
− ∂2

∂β2
(4.99)

for α, β ∈ {xy, yz, zy}. These relations show that trHuH�
u, and |∇divu|2

and |∇rotu|2 are dependent terms. Therefore, considering the regularisation

3 Setting D2f to be Whitney array of the order 2 generated by f , that is,

D2f = (fxx, fyx, fzx, fxy, fyy, fzy, fxz, fyz, fzz)
�

we have the relation
trHH� = |D2f |2.

Therefore, Equation (4.95) is expressed in the vector form as

J2(u) =

∫
R3

{|D2u|2 + |D2v|2 + |D2w|2}dx.
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term trHuH�
u is equivalent to solve vector spline minimisation for optical

flow computation.
The variation of J2(u) with respect to u derives the biharmonic equation

Δ2u = 0. (4.100)

This analytical property concludes that the Euler-Lagrange equation of the
variational problem

Jα β(u) =
∫
R3

{
|∇f�u + ft|2d + αtr∇u∇u� + βtrHuH�

u

}
dx. (4.101)

is
β

α
Δ2u −Δu +

1
α

(∇f�u + ft)∇f = 0, (4.102)

and its embedding into evolution equation is

∂

∂τ
u = −β

α
Δ2u + Δu − 1

α
(∇f�u + ft)∇f. (4.103)

Setting

un+1 − un

Δτ
= −β

α
Δ2un + Δun − 1

α
(Sun + ft∇f), (4.104)

we have the matrix iteration equation in the form

Aun+1 = Bun + c (4.105)

where

A = I +
Δτ

α
S, B = (I + ΔτL − Δτ

β

α
L2), c = −Δτ

α
ft∇f. (4.106)

This equation computed in the same manner with the iteration form derived
from the diffusion-reaction equation for optical-flow computation. Since4

L2 = UΛ2U�, (4.107)

we have the relation

ρ

(
I + ΔτL − βΔτ

α
L2

)
= max

i
|1 + Δτλi − Δτ

β

α
λ2

i |. (4.108)

where − 4·3
h2 ≤ λi ≤ 0, and 0 ≤ λ2

i ≤
(

4·3
h2

)2 Therefore, if

max
i

∣∣∣∣∣1 − Δτ
4 · 3
h2

− Δτ
β

α

(
4 · 3
h2

)2
∣∣∣∣∣ < 1, (4.109)

the iteration form of Equation (4.105) converges to the solution.
4 From Equation (4.41), we have the equation

L := I3 ⊗ P �(D2
2 ⊗ I ⊗ I + I ⊗ D2

2 ⊗ I + I ⊗ I ⊗ D2
2

+2D2 ⊗ D2 ⊗ I + 2D2 ⊗ I ⊗ D2 + 2I ⊗ D2 ⊗ D2)P .
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4.8 Concluding Remarks

We investigated the generalisation of optical flow in three-dimensional Euclid-
ean space. First, we analysed the effects of the divergence-free condition on
the computation of optical flow for three-dimensional distributions in three-
dimensional Euclidean space. With this condition, we obtained a system of
reaction-diffusion equations with coupling terms. We numerically evaluated
the convergence condition for this condition. The accuracy of the solution
computed by our algorithm is guaranteed by Lax equivalence theorem which
is the basis of numerical computation of the solution for partial differential
equations.

We derived the relation between vector regularisation and thin plate con-
straint for optical-flow computation, that is, we clarified that thin plate con-
straint is decomposed into four terms, the gradient of divergence, the vector
gradient of rotation, and two other terms which express the continuity of
vector functions in a space. Thin plate constraint derives diffusion with the
biharmonic term. This equation is numerically solved using the same scheme
with the usual diffusion-reaction equation for optical-flow computation.

Furthermore, we analysed the validity of the evaluation measure for
optical-flow computation and derived mathematical the background for the
established error measure.
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Summary. This work contributes to detection and tracking of walking or running
humans in surveillance video sequences. We propose a 2D model-based approach to
the whole body tracking in a video sequence captured from a single camera view. An
extended six-link biped human model is employed. We assume that a static camera
observes the scene horizontally or obliquely. Persons can be seen from a continuum
of views ranging from a lateral to a frontal one. We do not expect humans to be the
only moving objects in the scene and to appear at the same scale at different image
locations.

5.1 Introduction and Problem Formulation

Detection of walking or running humans in surveillance video sequences and
tracking them is an appealing computer vision problem. The problem has
been approached by many researchers. A satisfactory solution, however, has
not been presented yet.

This work suggests a model-based approach to tracking in a video sequence
captured from a single camera view. Matching of a human model to video
stream is performed in two dimensions (2D) on the image frame level. 2D
tracking aims at following the image projections of humans. The 3D displace-
ment of a human is perspectively projected into a planar displacement that
can be modeled as a 2D transformation. An adaptive model is required to
handle appearance changes due to perspective effects or due to the change of
the body parts position relative to each other. Two different postures in 3D
may result in identical 2D projection. This ambiguity in a 2D model matching
approach makes the tracking task rather difficult. The 2D–3D pose estimation
problem is further discussed in Chapter 12.

It has been previously argued by Gavrila [1] that the choice of a solution is,
to a great extent, application-driven. Our goal is to develop a method which
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could track humans in surveillance sequences, i.e., the main focus of our work is
in tracking humans when precise pose recovery is not critical. We assume that
a single static camera observes the scene horizontally or obliquely. We do not
consider a top view. Model-based approach could in longer perspective help to
overcome the assumption of a static observing camera. The walking/running
persons can be seen from a continuum of views ranging from a lateral to a
frontal one. We do not expect humans to be the only moving objects in the
scene and to appear at the same scale at different image locations. The method
copes with a slowly changing background. It is assumed that the whole human
body can be seen in the sequence. A short occlusion of a tracked human by
other objects in the scene is admissible too.

5.2 Our Approach Informally

Our approach is based on a similar philosophy as the seminal paper by
Hogg [2]. We also employ an articulated 2D model of a human consisting
of several rectangles modelling a simplified 2D view of a human body.

The biped model of a human is composed of six rectangles which are fit
to corresponding parts of a human body: head, torso, left/right thigh and
left/right calf, see Figure 5.1a. Our extended model also takes into account
data in the model neighborhood.

Our detection and tracking algorithm is designed as a loop consisting of
three steps: (a) detecting human candidates, (b) validating model of a human,
(c) tracking of the model in consequent frames.

Input of our algorithm is the outcome of pixel-based motion detector (back-
ground subtraction). When detecting human candidates in step (a), a coarse
model is used to direct attention to places in the motion image where humans
could be. The outcome is a region of interest (ROI). Detector of ROIs has to
find almost no false negatives.

In the validation step (b) a slightly more sophisticated extended biped
human model, recall Figure 5.1a, is employed within ROI to verify the
appearance of a human.

The model tracking process (c) is launched after successful model initial-
ization. If the model fails to explain image data satisfactorily in the tracking
process then the algorithm is stopped and restarted in the next frame.

The coarse detection of ROI could be viewed as employing a simple model
allowing the search of human candidates in a computationally efficient man-
ner. After the ROI is found, a model with a more refined structure better
explaining the observation could take over.

Such methodology opens a future way to employing models with a varying
refinement of model structure appropriate to available image data resolution
at which a human in the scene is present. This would lead to tracking a
person at a proper level of detail, attempting to track body parts only when
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possible, for example. Another potential is in adapting computational demand
to changing degree of certainty in the tracked human. This work reports results
in which only ROI detection and the extended biped human model are used.

5.3 Related Work

There has been a number of works adopting a model-based approach and an
articulated biped model. A survey of publications in human motion analysis
can be found in [1]. This survey identifies a number of applications and pro-
vides an overview of developments in the domain of visual analysis of human
movement preceding the year 1999. Many of the recent works, however, were
devoted to more precise body pose recovery and subsequent action recogni-
tion in high resolution videos. We feel that there is a number of issues as
self-occlusion which need to be further addressed to merely achieve better
robustness in tracking of articulated objects in low resolution surveillance
videos.

One of the early monocular model-based approaches to human detection
and tracking may be found in Rohr [3]. They matched gray value edge lines
to volume model contours and employed Kalman filter to estimate the model
parameters in the consecutive frames. A person moving parallel to the image
plane was assumed to reduce the complexity of the recognition task.

As far as the model is concerned, our work is close to Ju et al. [4].
They adopted a method for tracking articulated motion of human limbs
in a sequence using parameterized models of optical flow. They made the
assumption that a person can be represented by a set of connected pla-
nar patches: “cardboard person model”. Constraints introduced between the
patches enforce articulated motion. Their approach is limited to constant
viewpoint.

Our model is also similar to Zhang et al. [5]. They apply a 2D five-link
biped model to the problem of gait recognition using human body movements.
Their work is constrained to a human body observed laterally. We took over
their model and extended it significantly.

The model posture evaluation and the idea of a rough calibration of a scene
to estimate the size of the model in Beleznai et al. [6] was an inspiration for
us. Their method adopts a simple human model described by three rectangles
to detect individual humans within groups and to verify their hypothesized
configuration. The approach is capable of real time operation, and handles
multiple humans and their occlusions Beleznai et al. [7].

The model and the focus of our work relates to Lan [8]. They use a pictorial
structure model and aim at handling both self-occlusions and changes in the
viewpoint. This way of exploiting constraints provided by walking may be con-
sidered as a possible improvement in our initialization step. Lan [9] extended
the approach by taking limbs coordination into account. Both publications
work with silhouette data captured from a single camera viewpoint.
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The idea of our model is also related to Lim [10]. They present a multi-
cue tracking procedure. Their shape model is comprised of several silhouettes
learned off-line from training sequences. The shape model is used along with
an appearance model learned online for a given individual. The shape model
is learned from a built collection of normalized foreground probability maps
of humans. These probability maps are clustered into sets using K -means
clustering algorithm. A mean image is then built for each set creating a rep-
resentation of a pose. Tracking is then formulated as finding a set of warp
parameters which map a foreground blob in a frame onto one of the silhou-
ettes in the shape model. Their appearance model could be an inspiration for
a further enhancement of our approach.

Another source of inspiration may be found in Howe [11]. The author aims
at applying silhouette lookup to monocular 3D pose tracking. A knowledge
base of silhouettes associated with known poses is populated. A silhouette
extracted from an input frame identifies a set of silhouettes in the knowl-
edge base. Subsequent Markov chaining exploits the temporal dependency of
human motion to eliminate unlikely pose sequences. This solution is further
smoothed and optimized. The idea of maximizing the per-frame match to the
observations and the temporal similarity between successive frames simulta-
neously may also be applied to further enhance our solution. Adding a term
to a cost function employed in our method rewarding a solution close to the
one found in the preceding frame would only represent a minor alteration of
our algorithm.

Our approach also relates to Collins [12]. They adopted object tracking
approach based on color histogram appearance models. In addition, they con-
sider both object and background information to better distinguish an object
from its surroundings. Their mean-shift tracking system models object and
background color distributions and tracks targets through partial occlusions
and pose variations. Their work is restricted to tracking of rigid objects. As
opposed to their approach we use mean-shift to fit an articulated model to
image data. Our method is based on the motion segmentation computed using
the adaptive background model.

Using the methodology introduced in Section 5.2, the model introduced
in [6] could be adopted as a model with the least refined structure suitable
for tracking persons at a low image resolution. Our model could be viewed
as a more refined model, half-way to a model representing all body parts.
More complicated models accounting for arm motion and aspiring to higher
accuracy seem to be impractical in our context as the computational demand
appears to be too high.

Substantial part of this work was done during diploma thesis project of
the first author defended in February 2006 at the Czech Technical University
in Prague.
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5.4 Extended Six-link Biped Model

A human body may project to the image in a variety of forms. The articu-
lated structure of a person makes a vision-based tracking difficult even if a
constrained type of motion as walking or running is assumed. The idea behind
the model-based approach is exploiting explicit a priori knowledge about the
human body appearance in 2D.

A desired human model for surveillance should be simple for computa-
tional speed reasons and should enable capturing appearance of a variety of
individuals. On the contrary, the model should possess enough structure al-
lowing the expression of distinguishing appearance of a human.

5.4.1 Body Model

We adopted the 2D five-link biped articulated model of [5] and extended it
into a six-link model. Our model has added an articulated head and it can also
cope with a frontal view of a person. The biped human model consists of six
rectangles representing individual body parts. The rectangles are connected
by the joints. The model is shown in Figure 5.1a.

Arms are not included in the model as a reliable recovery of exact arm
positions of distant pedestrians is often difficult. The biped model is also
intentionally kept simple having in mind that low computational demand is
desired.

The model is parameterized by eight parameters. Finding a posture T
using the biped model Mb means determining its eight parameters, T = {C =
{x, y}, Θ = {θ1, . . . , θ6}}, where C is the model center and Θ is the inclination
vector consisting of angles between the axes of the body part and the vertical
axis y as shown in Figure 5.1a.

The biped human model is designed to cope with changing scale which
is common in surveillance sequences due to perspective projection from
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(a) (b) (c) (d)

Fig. 5.1. Six-link biped human model (a) Lateral (b) and frontal (c) model view.
Silhouette mask (d) used for evaluation of the extended model.
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3D → 2D. The humans further from the observer look smaller. A scale para-
meter of the model deals with the foreshortening of a projected human.

Each rectangle of the model is defined by its height l and length of its
base b. Each body part is described by {α, l}, where α = b/l is a base-to-
height ratio. Body part heights are normalized with respect to the height of
the torso l1 and the shape model is thus scale-invariant. A shape S of a human
is parameterized as follows: S = {K,R}, where K = {α1, . . . , α6} is the base-
to-height ratio vector, R = {r1, . . . , r6} the relative height vector, ri = li/l1,
i = 1, . . . , 6. The six-link biped model is composed as Mb = {T, S}. The frontal
and lateral view is coped with this model. The difference is in parameter α1

(base-to-height ratio of the torso) and positions of joints connecting the thighs
and the torso. The proportions can be seen in Figure 5.1b,c.

5.4.2 Extended Body Model

We extended the biped model to consider both the region explained by the
model and the region in the neighborhood of the model which is not repre-
sented by the model. A similar idea has been previously applied to a selection
of a configuration of models explaining observed clutter of humans [6].

The extended model M is formed by adding a rectangular neighborhood
to the biped model Mb. This neighborhood has the height of the biped model
Mb. The width of the rectangular neighborhood used is chosen so that it is
always possible that the whole walking body fits in the region. The width
is calculated as 0.53 · height. The rectangular neighborhood and the biped
model Mb share a common center.

5.4.3 Model Evaluation

The motion image I is the result of a pixel-based motion detector and con-
stitutes the input to the human detection/tracking system. I is formed as a
binary image the values of which tell if the pixel moves/is stationary with
respect to the local background, see Figure 5.8a, b, c for examples of the out-
come of motion segmentation. The commonly used motion detection algorithm
is based on a finite mixture of Gaussians, see Stauffer [13]. This approach can
deal with a slowly changing background. The implementation of the motion
detection algorithm by Fexa [14] is used.

To evaluate the model in current frame, a silhouette mask is created
according to current model view and posture, see Figure 5.1d. This mask
is used to compute the amount of missing measurements in the region RB
explained by the biped model (white region) and the unexplained observa-
tions in the model neighborhood RB (black region). Region RE represents a
complement of the region RB within the area of the extended model.

The cost of the current posture of the model M is calculated from the
motion image I as
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C(I | M) = exp

(
−a

[
1 − 1

ARB

∑
x,y∈RB

I(x, y)

]

−b

⎡⎣ 1
ARE \ARB

∑
x,y∈RE\RB

I(x, y)

⎤⎦⎞⎠ (5.1)

where ARB and ARE are the areas of the regions RB and RM , respectively.
Scaling parameters a and b were determined experimentally.

5.5 Matching Extended Model Against Data

A model M∗ of a human which fits the motion image I best is sought. Using
the cost function in Equation (5.1), the problem can be formulated as

M∗ = argmax
M

C(I | M) (5.2)

5.5.1 Mean Shift Optimization

Finding globally optimal parameters of the model M∗ in Equation (5.2) is
computationally complex. We engage the mean shift algorithm, an iterative
procedure that shifts a data point to the average of data points in its neigh-
borhood, to find locally optimal solution.

The mean shift idea was introduced by Fukunaga [15]. It was shown that
the mean shift vector pointing to a sample mean of local samples generally
points in the direction of higher density and thus provides a gradient estimate.
The mean shift algorithm was proposed in Fukunaga [16]. The method was
then generalized and presented as a mode-seeking process by Cheng [17]. At
last, the convergence of the iterated mean shift procedure on discrete data
was proved in Comaniciu [18].

We start from some initial estimate of the current stancev = (v1, . . . , v8)T =
(x, y, θ1, . . . , θ6)T . The local mean shift vector represents an offset to a posture
vector v′, which is a translation towards the nearest mode according to the
cost function in Equation (5.1). The local mean shift vector is computed within
the local neighborhood {vi}i=1...n of the point v. The point vi is assigned a
weightC (I | M(vi)) according to Equation (5.1), whereM(vi) = {T (vi), S} =
{{{v1, v2} , {v3, . . . , v8}} , S}.

The new posture vector v′ is computed employing the uniform kernel as

v′ =
∑n

i=1 viC (I | M(vi))∑n
i=1 C (I | M(vi))

(5.3)

Starting from the initial estimate of the current stance, the new posture vector
is repeatedly computed until it converges to the sought stance.
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5.5.2 Decreasing Computational Complexity

The model M has eight degrees of freedom and so we are faced with a mul-
tidimensional optimization problem. An iterative optimization procedure was
suggested in Section 5.5.1 to solve the task. However, seeking for an opti-
mal posture in eight dimensional space, i.e., computing an eight dimensional
mean shift would still be too time consuming. We decreased the computa-
tional demand by both reducing the size and dimension of the considered
model parameter space.

The size of the mean shift search space may be reduced in several ways.
First, impossible orientations of the individual body parts are considered.
Second, we exploit the fact that an observation of walking/running humans is
assumed. We thus expect the torso to stay upright and further constrain the
ranges of possible orientations of the limbs according to the type of motion
assumed. Last, location constraints are considered when initializing the model.
This last simplification will be further addressed in Section 5.6.2.

The complexity of the problem is further decreased by reducing the
dimension of the considered search space. This is achieved by not optimiz-
ing all the parameters at once, but always only a subset of those. Satisfactory
results were achieved by splitting the problem into several 2D and one 1D
optimization problems instead of considering all eight dimensions. This point
will be discussed in more detail in Section 5.6.2.

If a subset of parameters is optimized then only body parts involved are
used to evaluate the model, i.e., to create a model silhouette mask. All body
parts are used only if the current body posture is evaluated to decide whether
the model provides sufficient explanation of seen data and hence if tracking
can be started or continued.

5.6 Detection and Tracking

In our algorithm, we first use simple means to find a human candidate, i.e.,
we focus attention to a ROI. Subsequently, the model is validated at the
candidate location. At last, the tracker is started to follow the target in the
subsequent frames.

5.6.1 Human Candidate Detection

The attention is focused to the ROI in the motion image I where human can-
didates could be as illustrated in Figure 5.8a. This step significantly reduces
the amount of processed data and contributes to computational efficacy. ROI
is detected by correlation of a uniform rectangular mask with the motion im-
age I. The local maxima of the correlation point to moving entities of human
size in the image. These maxima are used as centers of ROI.
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The local maxima of the correlation refer to moving entities of human size
in the motion image. At present, only the strongest correlation maximum is
used as the current implementation tracks only a single person.

The height and width of the correlation mask has to be set. We work with
expected scaling of humans at a given vertical image location. This informa-
tion is obtained after a simple calibration performed manually for a given
image capturing setup. It is assumed that the scale of a human is linearly
dependent on the vertical image location. Such consideration is based on the
assumption that a camera provides an oblique view of a planar scene. The
more distant humans appear smaller and located higher in the 2D projection.

This step is inspired by [6]. We added the least-squares estimate of the
scale function which is based on the height of multiple humans present in the
scene at different vertical image positions.

In present implementation, it is also assumed the humans are roughly of
the same size. Even though minor height variations should be tolerated by
the model at considered scale, taking toddlers into account would require a
scale adjustment in the initialization phase.

The width of the mask used in correlation is chosen so that it is always
possible that the whole walking body fits in the region. The width is calculated
as 0.53 · height.

5.6.2 Model Validation

Having detected human candidate, we try to validate our model, i.e., to see
whether the model explains data satisfactorily. We first initialize our model
at the candidate location. The initialized posture is then further refined in
attempt to achieve better fit of the model to data. The resulting pose is
evaluated according to Equation (5.1).

Model initialization: After a ROI is detected, a 2D 6-link biped human
model is initialized at the candidate location in the motion image I, see
Figure 5.8b for illustration. This means that the position of the model and
orientation of individual body parts in the image are determined. The pose
explaining the data optimally is searched using the mean shift algorithm
introduced in Section 5.5.1.

It is convenient to initialize the model incrementally. The torso is initial-
ized first, followed by limbs and head. Finding the initial body posture as
a whole would be computationally demanding. Starting from torso leads to
insensitivity to unimportant phenomena in the image such as shadows (to be
described later).

A subregion corresponding to the torso within the ROI is sought first.
This subregion has the width of the ROI. The height and the position of the
subregion correspond to the trunk of a person at this scale. The trunk region
is initialized in the middle of the selected subregion. The optimal horizontal
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position and orientation of the trunk is found according to Equation (5.3)
within this subregion. The horizontal position of the model is updated.

Detected ROI yields a possible body center of a human. We expect, how-
ever, this information to be only a rough estimate of the true position. We
try to improve our estimate by handling the data on a finer resolution. For
this reason, we do not start by setting the model center to the middle point
of the detected human silhouette, as opposed to [5]. We assume that some
parts of the segmented region may not belong to the human body. A shadow
underneath the body is very common. Torso tends to be less affected by such
shadows. The body center update based on torso initialization usually does
not take such spurious subregions into account when the body posture is
estimated.

After positioning the torso, we proceed by placing the limbs. Orientation
of both thighs is determined at once, followed by positioning of both calves.
Treating thighs/calves simultaneously yields a better fit. Finally, the head
orientation is found.

Initializing the body parts incrementally yields three 2D and one 1D opti-
mization problems instead of one huge 8D problem. The remaining one degree
of freedom (vertical position of the whole model) was already initialized when
ROI was set. This reduces significantly the problem complexity.

Both frontal and lateral model views are initialized in this step. The model
view better explaining the motion image according to Equation (5.1) is chosen.

Posture refinement: The model initialized in the previous step, keeps
the vertical position of the previously detected ROI. Its horizontal position is
allowed only within the ROI. The posture refinement does not take this limi-
tation into account any longer. We aim to optimize the previously initialized
human stance. The possible wrong vertical position of the model estimated in
the previous step is refined in this phase.

Individual model parts are again handled separately with the goal
of decreasing computational demands. There is a tradeoff between the
model/image data fit and the degree of model separation in optimizations.

Satisfactory results are achieved when following iterations are run until
convergence. First, the horizontal position of the model is optimized. Second,
the vertical position of the model together with the trunk orientation is cal-
culated. Third, both thighs are fit simultaneously. Fourth, both calves are
adjusted to the data at the same time. Finally, the orientation of the head
is estimated. See Figure 5.8c, d for outcome illustration. The found model is
superimposed on both the original data (Figure 5.8d) and the motion image
(Figure 5.8c).

The model fails to explain data satisfactorily if the cost, recall Equation
(5.1), of the current model posture does not exceed an experimentally esti-
mated threshold. In this case, the ROI location is not considered any more in
the current frame.
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5.6.3 Tracking

When the initialization of the model is successful then the mean shift tracking
is launched in the next frame.

The pose of the model is available from the previous frame. By considering
dynamics of human motion, we take the advantage of temporal constraints
provided by walking and running and modify the pose. Dynamics are imple-
mented as half a dozen hand coded rules which take periodic motion into ac-
count. For instance if the limit position of limbs is reached then the movement
in the opposite direction is anticipated. Another rule is meant to anticipate
the swing of the calf when both legs are occluded. The speed of this body
part is greatest in this phase of a gait cycle and the tracker looses the body
part in case the number of frames per second is insufficient. This step aims
at anticipating the human pose in the current frame based on the model pose
found in the preceding frame. Introducing dynamics helps to overcome the
local character of the optimization procedure.

Tracking uses the same iterative procedure described in Section 5.6.2 which
starts from the anticipated pose and is repeated until convergence.

It is assumed that the frame rate is sufficiently high so that the person
tracked remains in the scope of the mean shift kernel. In case the tracked
person is lost the algorithm is restarted.

5.7 Experiments and Lessons Learned from Them

The method was tested on several real sequences, see the CMP Demo
Page [19]. The motion detection algorithm [13] provides the sequence of binary
images telling which pixels are in motion. This sequence is the input to our
implementation. Our model-based tracking is implemented in MATLAB.

5.7.1 Body Model

We choose an articulated biped model without arms. The choice of the
employed model can be justified by observing the found model postures
superimposed on the silhouette images of tracked subjects.

The extension of the model by the head improves matching the model
against image data. The head together with shoulders is a significant char-
acteristics for a frontal human appearance especially if limbs cannot be dis-
tinguished in the outcome of the motion segmentation. This feature helps to
position the model horizontally, see Figure 5.6b. The improvement of employ-
ing the articulated head is noticeable when the person is seen laterally and at
the same time the head is not coaxial with the torso. A better fit in vertical
direction is found in this case, see Figure 5.3b.

It can be seen that there is very little information in the motion images at
considered scale for recovering the position of arms. This task would require
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using additional features other than segmented motion and would lead to
slowing the system down. The position of arms is not crucial in our context.
Hence, we do not consider arms in our model. The legs and the head, on
the contrary, appear to be distinguishing features. For this reason, we include
these parts in the employed model. By observing the silhouette images, it may
be verified that the used model corresponds to the level of detail provided in
data at the considered scale. See the images in Figure 5.8c for examples.

The frontal model view and the lateral model view are used to fit a person
seen from a corresponding perspective. The cost function in Equation (5.1)
provides a criterion for choosing a view when facing the task of fitting the
model to data on individual frame level. Figure 5.8a, b, c shows examples of
initializing the model to motion data. These images depict several poses and
both the frontal and the lateral view. In Figure 5.8d, the resulting posture and
the chosen model view are superimposed on the original image data. Figure 5.2
illustrates that both the frontal and the lateral model view may be employed to
fit a person observed from a range of diagonal views. In Figure 5.2a, b fitting
of the frontal model view to a person viewed diagonally may be observed.
Figure 5.2c, d depicts how the lateral model view is matched against a human
seen diagonally. The motion images are displayed on the left of the original
data.

We tested the robustness of the model by fitting it to images of persons
walking under different conditions changing slightly their appearance in the
motion data. Figure 5.3 illustrates outcome of the experiment. The tested
conditions included walking with a backpack (Figure 5.3a, b) and walking with
a plant in hand (Figure 5.3c, d). Again, the motion images are displayed on
the left of the original data in Figure 5.3. The model was matched properly in
both cases. It appears that slight variations in the appearance of the silhouette
image are handled properly by the model.

(a) (b) (c) (d)

Fig. 5.2. Fitting the frontal model view (a, b) and the lateral model view (c, d) to
a person seen diagonally. The detected model is superimposed on the motion data
(a, c) and the original images (b, d). The images of the segmented motion appear
on the left of the corresponding original image.
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(a) (b) (c) (d)

Fig. 5.3. Matching the model against silhouette images of persons walking under
different conditions: walking with a backpack (a, b) and walking with a plant in
hand (c, d). The detected model is superimposed on both the motion data (a, c)
and the original images (b, d). The images of the segmented motion appear on the
left of the corresponding original image.

(a) (b) (c)

Fig. 5.4. Improving accuracy by employing articulated model (a,b). A simple rec-
tangular model employed to find ROI is drawn in cyan. Our articulated human
model is drawn in green. Discriminating human appearance from a moving nonhu-
man object (c).

Our experiments also illustrate that a model capable of accounting for
a human articulated structure allows not only to detect a desired object
but also provides better accuracy as opposed to one that is less refined.
Model center found by the simple rectangular model employed to find the
ROI is typically improved by employing articulated model. Figure 5.4a, b
shows two detailed views from a sequence with a person walking in a garden
(WalkingPersonKinskyGarden.avi, [19]). The detected ROIs and the corre-
sponding model centers are drawn in cyan. Final locations of the models are
drawn in green. Frame in Figure 5.4a presents a person seen laterally. The
position was improved in the direction of both x (6 pixels) and y (4 pixels)
image axes. The height of the model at the ROI location and at the final
location was 89 and 88 pixels respectively. Figure 5.4b displays a person seen
frontally. The center location was improved in both x and y image axis by 4
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and 6 pixels respectively. The height of the model at the ROI location and
at the final location was 83 and 82 pixels respectively. Variable scale of the
human present in the scene is caused by the perspective foreshortening.

All individuals in our experiments were matched using the same model.
It is only the scaling factor that varies. Experimental results illustrate in the
presented images that the chosen model may be fit to a variety of individuals
at different scales.

5.7.2 Distinguishing Human Appearance from Nonhumans

The ability to discriminate humans from other moving objects present in
the scene is illustrated in a sequence which contains a walking person and
a small agricultural tractor moving in the background (MovingPersonAnd-
TractorWallensteinGarden.avi, [19]). A frame where both the figure and the
moving object are far apart is shown in Figure 5.4c. Both moving objects rep-
resent two separate regions in corresponding motion image. Current version
of the proposed algorithm tracks one individual. However, all detected ROIs
were processed by our algorithm in this particular frame. Human appearance
has been correctly detected by the model and the moving tractor remained
unnoticed. However, it is only the small agricultural tractor that was present
in the sequence. This experiment provided thus a relatively easy case to test.
Hence, the ability to distinguish humans from nonhumans needs to be further
tested on subjects closer to the appearance of persons.

Figure 5.5 shows two different detailed views from the sequence men-
tioned above. Both the motion segmentation (Figure 5.5a, c) and the original
data (Figure 5.5b, d) are provided. The walking person occludes the moving
object in the first view (Figure 5.5b). As a result, regions in the motion image
(Figure 5.5a) corresponding to the person and the moving object merge into

(a) (b) (c) (d)

Fig. 5.5. Detecting a walking person occluding other nonhuman moving object. A
rejected model is superimposed on the motion data (a) and on the original image (b).
A successfully validated model is superimposed on the motion data (c) and the
original image (d). The images of the segmented motion appear on the left of the
corresponding image of the original data.
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a single blob of foreground pixels. A ROI was found at this location and both
model views were initialized. The frontal model view was classified as a view
better explaining the observed data. The detected human yields a relatively
good fit as far as the region explained by the biped model is concerned. How-
ever, there are too many foreground pixels in the biped model neighborhood
in this case. As a result, the data is classified as unexplained and the model is
rejected. In the second view (Figure 5.5d), the person still partially occludes
the moving object. Again, a relatively good fit is found with regard to the
region explained by the biped model. However, there are less unexplained ob-
servations in the region outside the biped model in this example (Figure 5.5c).
The data is thus classified as sufficiently explained and the human appearance
is validated. It can be observed that a correct view has been identified in this
case.

The pose found by the proposed algorithm may yield a correct pose even
in the case the data is classified as unexplained at last. Regardless of the
incorrectly chosen view, the pose found in Figure 5.5b may be described as a
correct one.

A rejected model may represent a correct pose provided characteristic
features are present in the input data. It is the head and the legs that help the
algorithm to place the model in this particular case. However, the uncertainty
that a human appearance was found in this particular case was considered
too high and the detected pose was rejected.

A found posture is rejected whenever the characteristic appearance of the
human silhouette is lost in a large foreground blob. Motion data do not allow
to discriminate the desired object any longer in this case and the process needs
to be supported using other information. An appearance model [10] would pro-
vide additional cues on the individual frame level. These two approaches have
complementary strengths, and may support each other. See Elgammal 2 for
more details on learning representations for the shape and the appearance of
moving objects. Introducing a model of human dynamics would help to tackle
the problem using temporal information. The dynamical model could further
be extended by integrating prior knowledge via an a priori pose distribution.
Gall 13 discusses how such pose distribution may be learned from training
samples. In the current work, however, only tracking employing the proposed
extended human model is implemented. A multi-cue tracking is considered in
the future work.

The motion detection algorithm is capable of handling slowly moving back-
ground. However, background clutter is still very common in the outdoor
motion images. Vegetation such as grass, trees or bushes swaying in the wind
is often a cause of such background clutter. It is thus crucial to distinguish
the desired object from such spurious artifacts. The ROI detector uses a sim-
ple rectangular model to find human-like rectangular regions. A threshold is
responsible for accepting the ROI. Such region possesses a portion of fore-
ground pixels which may constitute a human silhouette. A good fit of the
model is then possible provided a human is really present. The rectangular
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model considers the data in the region as a whole. The extended model, on
the contrary, provides means to account for the structure of the data. The
configuration of the foreground pixels has to be such that most of the pixels
appear in the subregion explained by the biped model and minimum elsewhere
in the considered region. A human-like silhouette is formed in this case. Our
articulated model together with basic kinematic constraints allows to vali-
date variety of human silhouettes. Our experiments suggest that the model is
sufficiently robust in the case of background clutter.

5.7.3 Employing Extended Model to Fit Data

The principal idea of fitting the proposed extended model to a motion image
is to minimize the amount of missing measurement in the region explained
by the model and at the same time the amount of unexplained observations
in the model neighborhood. To illustrate how the extended model improves
matching the model against data as compared to the biped model without the
extension we performed two types of experiments. The model was initialized
in a region with a human silhouette. First, we initialized the biped model
without the extension. This is achieved by simply neglecting the second term
in the cost function in Equation (5.1), i.e, by setting the parameter b = 0.
The unexplained observations in the model neighborhood have no influence
on the value of the cost function in this case. In the second experiment, we
initialized the proposed extended model. These two experiments show that
employing the extended model brings two main benefits.

First benefit, the model placement is improved. A shadow underneath the
human body is common and often causes a significant artifact in the motion
image. The head on the other hand is usually less pronounced. A strong
shadow and a less pronounced head sometimes lead to a false model place-
ment. This happens in the case when we only consider the region explained
by the model. It would result in fitting the model to the strongly pronounced
but unwanted region. The second term in Equation (5.1) is responsible for
taking the unexplained observation into account. This helps to tackle the
problem by lowering the cost of the posture when a shadow is present, help-
ing thus to drive the model away and identifying the head at the same time.
Figure 5.6a, b shows a detailed view from the sequence with a person walking
in a garden (WalkingPersonKinskyGarden.avi, [19]). Only motion segmenta-
tion data are displayed. The images present a rather noisy silhouette of a
person seen frontally. A well pronounced shadow region is present underneath
the body in the motion image. The model superimposed on the motion data
in Figure 5.6a was initialized without the extension. On the contrary, the
model displayed in Figure 5.6b was initialized employing the proposed model
extension. The position of the extended model was improved by two pixels in
vertical direction in this particular case.

Second benefit, the extension of the model improves limbs placement. A
fitting procedure is desired which yields a proper position when (a) one leg
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(a) (b) (c) (d)

Fig. 5.6. A slightly improved model placement and limbs localization. Matching
model against motion data without (a, c) and with extension (b, d).

occludes the other and also (b) it rewards placing of limbs astride if possible,
as illustrated in Figure 5.6c, d. A procedure minimizing only the missing
observation in the region explained by the model would lead to a proper
position in the case (a), however, it would often result in placing occluded
legs also in the case (b). The first term in Equation (5.1) forces the body
parts to cover the motion region while minimizing the missing measurement
in the region explained by the model and solving thus the case (a). The second
term in Equation (5.1) should be insignificant in the case (a) when little
unexplained observation is present in the model neighborhood. In the case
(b), however, the cost function should force the body parts to cover the region
maximally thus lowering the value of the second term. Figure 5.6c, d shows
a detailed view from the sequence mentioned in the preceding paragraph.
Again, motion segmentation data are displayed. This time, a person seen
frontally is present in the images. In this experiment, we aim to illustrate
the criterion presented in the Equation (5.1). However, the outcome of both
experiments may be difficult to evaluate if the optimization employed in our
algorithm is used. If two local optima are found in both experiments, it is
difficult to judge what leads to such outcome. The resulting dissimilarity of
the results may be caused by the criterion. However, it may also be caused
by the local optimization which detected two local optima which are close to
each other or far apart. Hence, the model position was fixed and the pose
was found by the exhaustive search in this case. This enables to illustrate the
fitting criterion and to neglect the influence of the optimization procedure.
Figure 5.6c illustrates how the model was initialized without the extension.
The model displayed in the Figure 5.6d was initialized with the use of the
proposed model extension. Improved placement of the legs may be observed
in the case of the proposed extended model. Figure 5.6c, d illustrates that the
cost function in Equation (5.1) rewards placing the limbs in a way that covers
the foreground region maximally. This helps to find the correct pose on the
individual frame level and leads to a better fit in case (b) mentioned above.
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5.7.4 Detection and Tracking

Detecting human candidates: The first column of images in Figure 5.8
illustrate the outcome of the ROI detector. It may be observed that a human
silhouette is found approximately. This step is clearly influenced by the shadow
underneath the body which shifts the detected model center under its true
location. Hence, the ROI detector fails to include the head in these cases. In
addition, these results illustrate that the horizontal position also needs to be
refined. The third row of images in Figure 5.8 has two parallel traces present
in the bottom part of the view. These were caused by a sudden change of
illumination. Resulting shape of these artifacts was caused by surrounding
trees. Such artifacts further influence the task of ROI detection.

Figure 5.7 shows the outcome of the motion segmentation of two frames
from the sequence with a person walking in a garden (WalkingPersonKin-
skyGarden.avi, [19]). The outcome of ROI detection is superimposed on the
motion data. The case presented in Figure 5.7a shows a person with legs being
apart and the body appearing approximately symmetrical with regard to the
vertical image axis. A relatively good estimate of the model center is yielded
by the ROI detector in this case. In addition, the shadow underneath the body
does not seem to influence the detection in this particular case and most of
the region representing the head is included in the ROI. In the second frame
displayed in Figure 5.7b, however, the person does not appear symmetrical
with respect to the vertical image axis any more. The estimated model center
is clearly shifted to the left regarding the true position. Additionally, due to
the pronounced shadow underneath the body, part of the head is excluded
from the detected region, as shown in Figure 5.7b.

This step provides only a rough estimate of the true position of human
candidate.

Model initialization: The ROI detector yields a location where a human
could be. The extended human model is then initialized in the detected region.

(a) (b)

Fig. 5.7. Detecting the region of interest (ROI). The found ROI is superimposed
on the motion data.
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(a) (b) (c) (d)

Fig. 5.8. ROI detection (a), model initialization (b), posture refinement (c) and
outcome (d). Images of segmented motion are displayed as binary black and white
images. Original data is displayed in the column (d). The found model is superim-
posed on both types of data. Courtesy A. Fexa for the sequence.

The model initialization step is crucial for several reasons. First, it has to be
verified whether a person is present at the candidate location. Second, pro-
vided a human is really present in the ROI, initializing the model to data
should result in a fit that explains observed data sufficiently. If the above
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conditions are fulfilled then the tracker is started. Third, the correctly initial-
ized view and posture lead to proper tracking. Initialization procedure that
would lead to frequent erroneous rejection of a human candidate would cause
the high false negative rate. That is undesirable in the considered applica-
tion area. For these reasons, it is vital to initialize the model correctly for
successive tracking. We tested the functionality of the proposed initialization
procedure in three experiments. The outcomes were evaluated by observation.

In the first two experiments we considered models detected in every frame.
We looked at several issues. These issues included: portion of frames with a
detected person (regardless of the fact whether the model was successfully
initialized or rejected), portion of frames with a successfully initialized model,
portion of frames with a properly identified model view, portion of frames
which have a model with all the parts positioned correctly and at last, portion
of frames which contain a model with maximally one misplaced part. A person
is considered as detected in case the region representing the human appears
mostly in the region of the extended model. A part is classified as correctly
matched provided that a greater part of the region representing the part is
explained by the corresponding model part.

The process is influenced by a number of aspects with regard to the consid-
ered scene and camera setup. Hence, for the first and the second experiment
we chose two sequences from our data set with relatively steady conditions
that allowed evaluation of the chosen approach. On the other hand, both ex-
periments presented persons carrying an object. We applied the ROI detection
and subsequent model initialization to every frame of the test sequence. No
information from the preceding frames was propagated to subsequent ones.

Sequence 1 had 137 frames of 360 × 288 pixels each, 25 frames per sec-
ond and presented a relatively fast walking pedestrian carrying a backpack
(WalkingPersonWithBackpackCharlesSquare.avi, [19]). This made the model
view choice more challenging. The person walked from the left to the right
and was fully visible in 108 frames. The person was observed laterally at a
constant scale. The height of the person in the images was 75 pixels. A ROI
is initialized when an object is believed to appear fully in the image. For this
reason, we only used these frames for a test assessment, i.e., 108 frames. All
the detected models were considered in the evaluation including the rejected
ones. See Figure 5.3b for detailed view of the tracked person and Table 5.1
for results.

Sequence 2 had 116 frames of 360 × 288 pixels each, 25 frames per second
and showed a walking gardener with a plant in hand (WalkingPersonWith-
PlantWallensteinGarden.avi, [19]). Again, this should make the model view
choice and the fit itself more challenging. First ROI was detected in a frame
number 26. Subsequently, ROI was provided in the next 60 frames. The person
walked from the right to the left. The person was observed laterally at a con-
stant scale. The height of the person in the image was 150 pixels. Again, only
those frames for a test assessment were used in which a ROI was available, here
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Table 5.1. Human candidate detection and model initialization. Summary of the
experiment where ROI detection and subsequent model initialization are applied to
every frame separately. Table shows number of frames, portion of frames where
ROI has been detected, portion of frames where model has also been success-
fully initialized, portion of frames with correctly identified model view, portion of
frames where model with all its parts is positioned correctly and at last, portion
of frames which contain a model with maximally one misplaced part. A person is
present in all considered frames.

Test sequence Frames Detected Initialized Correct view All parts Max. 1 part

Sequence 1 108 100% 100% 99% 96% 100%
Sequence 2 60 100% 100% 98% 87% 100%

60 frames. All the detected models were used in evaluation. Figure 5.3d shows
detailed view of the tracked person and Table 5.1 results of the experiment.

The purpose of the third experiment was to learn how the individual steps
of our algorithm preceding the tracking itself contribute to a resulting initial
fit. Another goal was to assess the overall functionality of the initialization step
under more varying conditions. The sequence which has a person walking in a
garden (WalkingPersonKinskyGarden.avi, [19]) was found to be appropriate
for the task. The tested conditions included variable scale, changing viewpoint,
present shadows, background clutter and noisy data yielded by the motion
detector. The scale of the person in these experiments varied from 82 to 88
pixels. An overview of the experiment is given in Figure 5.8.

The first column of images in Figure 5.8 shows the outcome of the ROI
detector. These views illustrate how the detection was influenced by shadows,
background clutter and noise in the data. Results of ROI detection shown in
the first column of images in Figure 5.8 suggest that the model center needs
to be refined in the direction of both image axes.

Views in the second column in Figure 5.8 depict how the model was initial-
ized in the ROI. Typically, the horizontal position of the model is improved
and the first rough fit of the model is found in this step. However, the model
vertical position is fixed in this phase and keeps the values yielded by the ROI
detector. The model view was correctly chosen in these examples.

As previously explained, the vertical position yielded by the ROI detector
needs to be corrected in the presented examples. The third column of images
in Figure 5.8 shows the final fit of the model after the refinement step. The
final model posture superimposed on the original data may be seen in the
last column. Comparison of these images with the ones illustrating the rough
initialization reveals that it is the vertical location in the first place that
was refined in this step. Further inspection shows that orientations of the
remaining body parts have also been slightly improved. See the second and
the third image in the first row in Figure 5.8 for example. The vertical location
was clearly improved in this case. This instance further illustrates the role of
the model extended by the head when dealing with unwanted phenomena
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such as shadows. The model was driven away from a well pronounced region
to a region less significant in the image. However, a location was found which
better corresponds to the employed model and the head was thus identified.
These two views also illustrate how, for instance, the orientation of the front
calf was improved in the refinement step.

Tracking: Our data set contains videos of six individuals, who are walking
in the outdoor environment under varying conditions: walking with a back-
pack, walking with a plant in hand, walking with a jacket over the shoulder
and walking with a small agricultural tractor moving in the background. The
types of motion tested included slow walk, fast walk, running, standing still
shortly and their transitions. Both tracking at the constant and slightly vari-
able scale was tested. Our tracking algorithm was presented with persons seen
in continuum of views ranging from frontal to lateral. In addition, view tran-
sitions were tested. At last, the experiments illustrate how partial and full
occlusions are handled. The sequences were processed by the proposed track-
ing algorithm, see CMP Demo Page [19], all using the same parameter setting
(the view calibration was different for each scene, of course).

Let us further demonstrate the results on two sequences in more detail.
It has been already said that a model part is classified as correctly matched
provided that a greater part of the region representing the projected body part
is explained by the corresponding model part. Results were again evaluated
by observation. Only those frames were used for a test assessment, where a
ROI was available.

In the first experiment, the proposed tracking algorithm was tested on
the sequence which has a relatively fast walking pedestrian carrying a back-
pack (WalkingPersonWithBackpackCharlesSquare.avi, [19]). This sequence
was previously introduced as Sequence 1.

The person has been correctly detected and the model initialized in the
first considered frame. The algorithm tracked the person properly through-
out the sequence. No reinitialization of the tracking procedure was needed.
All the model parts were matched correctly in 98% of the frames. In the
remaining 2% of the frames, only one body part was classified as being not
positioned properly. However, these cases were still found to be close to the
correct position.

In the second experiment, the tracker was tested on the sequence which
showed a walking gardener with a plant in hand (WalkingPersonWithPlant-
WallensteinGarden.avi, [19]). This sequence was previously introduced as
Sequence 2.

The person has been correctly detected and the model initialized in the
first frame. The algorithm tracked the person properly in the next 53 frames.
The tracker reinitialized twice at the end of the sequence. The first reinitializa-
tion happened due to the wrong position of a leg. The second reinitialization
was due to many unexplained observations in the motion data caused by the
carried object. The tracking process continued afterwards. All the model parts
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Table 5.2. Tracking. Summary of the experiment where ROI detection, model
initialization and subsequent tracking are applied. Table shows number of frames,
number of times tracking has been reinitialized, portion of frames where model with
all its parts is positioned correctly and at last, portion of frames which contain a
model with maximally one misplaced part. A person is present in all considered
frames.

Test sequence Frames # of reinitializations All parts Max 1 Part

Sequence 1 108 0 98% 100%
Sequence 2 60 2 91% 100%

were matched correctly in 91% of the frames. Only one body part was classi-
fied being positioned improperly in the remaining 9% of the frames. It appears
that an incorrect scale of the person determined during the calibration step is
the cause of the misplaced parts. It was mostly the head that appeared above
its true position. Smaller model may yield a better fit in these cases. Results
of the the two experiments are summarized in Table 5.2. Processed sequences
can be viewed at the CMP Demo Page [19].

The sequence which has a person walking in a garden (WalkingPersonKin-
skyGarden.avi, [19]) was found appropriate for testing slightly variable scale,
changing viewpoint while walking or turning, present shadows, background
clutter and noisy data yielded by the motion detector. The scale of the person
in the experiment varied from 82 to 88 pixels. Variety of conditions mentioned
above were satisfactorily handled by the proposed algorithm. Results may be
observed at the CMP Demo Page [19].

5.8 Conclusion

This work contributes to the 2D model-based whole body tracking in motion
images. The extended biped model of humans was proposed. It has been shown
that the model is general enough to capture the appearance of a variety of
individuals. Our experiments also suggest that the model possesses enough
structure to express the distinguishing characteristics of humans observed in
the motion images. Model parametrization is scale independent and allows
tracking of a person at a variable scale. The frontal and the lateral views are
treated in a single framework. As a result, a person tracked by our method
may be seen from continuum of viewpoints, as opposed to [3–5].

The model to data fit criterion considers both motion image data in the
region explained by the biped model and in its neighborhood. Both the number
of missing measurements in the foreground and the number of unexplained
observations in the background are minimized simultaneously. This provides
an inherent mechanism which allows it to cope with limbs placement in the
case of self-occlusion. As opposed to [12], where the use of background is
also made, we do not restrict ourselves to tracking of rigid objects. When
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tracking, both the foreground and the local background need to be explained
at the same time. This provides means for tracking assessment and dropping
the tracking in case the target is occluded by a large still or moving object.
Such fit criterion also copes with spurious artifacts such as shadows.

Besides tracking, our solution addresses both target detection and tracking
initialization. We employ a computationaly unexpensive method first to focus
attention to a region of interest before more refined model is used to validate
human appearance. This allows to formulate tracking as a local mean shift
optimization and decrease computational complexity of articulated tracking.
As opposed to [10], our approach is inherently model-based and does not
require training sequences and offline training.

Our algorithm aims at tracking of humans in low resolution videos.
Processed sequences, see [19], illustrate the capability to track humans under
realistic outdoor scene conditions. A person is tracked under variable illumina-
tion and with shadows present. Oclusions, slightly variable scale are handled,
basic discrimination between a human and a nonhuman object has been illus-
trated. As opposed to [6,7], we do not assume humans to be the only moving
objects in the scene and provide means for discrimination between moving
human and nonhuman. A person walking, stopping, turning around is suc-
cessfully tracked. Last, our experiments illustrate that the approach is robust
to typical conditions changing slightly human appearance.

As the future work, we propose to test the approach more extensively,
improve the dynamics by treating both abrupt changes in motion as well as
smooth transitions. Biped model pose initialization can be improved by taking
coordination between limbs [9] into account. This could suppress the ambigu-
ity caused by projection of 3D world into 2D images. Blake [22] suggests how
a dynamical model can be learned.

Basic multi-person tracking may already be achieved within current frame-
work. This would mean using our algorithm to initialize multiple ROIs and
tracking these models in the consecutive frames as described in the text. The
tracker does not try to fit the model to a large foreground blob that can
not be explained using single model. As a result, tracking would automati-
cally be dropped in case of occlusions and started after the tracked person
appears unoccluded again. This is a desired behavior when using the motion
information only as the segmentation does not provide means to distinguish
human appearance in this case. Occlusions would thus be handled in a naive
yet sensible way.

The tracking through occlusions can be supported by adopting an appear-
ance model described in [10, 12] and by utilizing the temporal information
according to [11]. Initializing multiple models to a foreground blob repre-
senting a clutter of persons is another possible extension of the multi-person
tracking. For instance, the approach to detection of humans within groups
and verification of their hypothesized configuration described in [6] could be
extended using articulated models.
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In future work, we also intend to test the approach more extensively on
data-sets that allow comparison with different tracking algorithms. Hence,
we consider testing the proposed method on both the USF Gait Challenge
data-set [20] and the CMU MoBo data set [21].

The time performance has not been tested in the current work. Further ex-
periments are needed to evaluate the potential of the chosen approach for real
time applications. Our current implementation is in MATLAB. We consider
re-implementation in C++ and time performance testing. We would like to
learn in what degree our more complicated model as compared to [6] slows the
system down and, on the other hand, brings better accuracy and robustness.
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Summary. We present a data-driven dynamic coupling between discrete and con-
tinuous methods for tracking objects of high dofs, which overcomes the limitations
of previous techniques. In our approach, two trackers work in parallel, and the cou-
pling between them is based on the tracking error. We use a model-based continuous
method to achieve accurate results and, in cases of failure, we reinitialize the model
using our discrete tracker. This method maintains the accuracy of a more tightly cou-
pled system, while increasing its efficiency. At any given frame, our discrete tracker
uses the current and several previous frames to search into a database for the best
matching solution. For improved robustness, object configuration sequences, rather
than single configurations, are stored in the database. We apply our framework
to the problem of 3D hand tracking from image sequences and the discrimination
between fingerspelling and continuous signs in American Sign Language.

6.1 Introduction

The 3D shape estimation and tracking of deformable and articulated objects
from monocular images or sequences is a challenging problem with many ap-
plications in Computer Vision. In this chapter we present a novel framework
for 3D tracking, which uses a learning-based coupling between a continuous
and a discrete tracker. To demonstrate its performance, we apply our generic
method to the case of 3D hand tracking, since hands are a difficult case of
articulated objects with high dofs, with frequent self-occlusions and complex
motions (strong rotations etc.).

There are generally two major approaches in deformable and articulated
object tracking: (i) continuous (or temporal) methods that use both temporal
and static information from the input sequence, and (ii) discrete methods,
which handle each frame separately, using only static information and some
kind of prior knowledge.

For the case of 3D hand tracking, several techniques treat the hand con-
figuration estimation as a continuous 3D hand tracking problem [9,10,12,27].
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A possible drawback of some of them is that they introduce error accumula-
tion over time, leading to the loss of track, and when this occurs, they usually
cannot recover. This is the reason why several shape estimation techniques
have been developed in the past few years [4, 13], treating each frame inde-
pendently from the previous ones, although these techniques usually require
higher computational times.

Both continuous and discrete methods for 3D hand tracking can be divided
into two main classes: (a) model-based [8, 10, 16], where 3D hand models are
constructed and a matching takes place between the input image features and
the respective features of the model projection onto the image plane, and (b)
appearance-based approaches [14, 19], which involve mapping of the image
feature space to the hand configuration space.

In the past few years, some approaches that use hand configuration data-
bases have been proposed [3, 17, 20] in which the 3D hand pose estimation
problem is converted into a database indexing or learning problem. The main
problem that arises in these methods, apart from the computational complex-
ity, is that multiple matches between the input hand image and the database
samples may occur. In our proposed discrete method, the database consists
of hand configuration sequences, instead of single configurations. In this way,
we impose a temporal continuity constraint: we take into account not only
the current hand configuration but also the recent past, i.e., which sequence
of configurations this hand shape resulted from.

Another problem tackled by some methods [2,4,19,21], is the background
complexity, i.e., discrimination between the hand and the background edges,
when using edges as the visual cues for hand configuration estimation. The
method of [21] is based on Elastic Graph Matching (EGM), using a com-
bination of features, such as edges and texture. In [4, 19] matching between
the input edge map and shape templates, derived from a database, is used
to find the best matching hand edges. In [2], the Hidden State Shape Mod-
els (HSSMs), similar to the Hidden Markov Models (HMMs) are introduced,
also using prior knowledge (shape templates) for training purposes. In our
work, we apply a skin classification method, namely a Support Vector Ma-
chine (SVM) to model the skin color. In this way, we manage to maintain the
skin regions and the hand edges, rejecting most of the background edges, as
described in Section 6.2.4, without the time consuming template matching. In
cases where the tracked hand is close to or occludes another skin region, e.g.,
the face, which actually happens often in ASL videos, we also rely on the tem-
poral continuity constraints of either the model-based continuous tracker [10]
or our discrete tracker.

In this chapter, we present a new framework for robust 3D tracking, to
achieve high accuracy and robustness, combining the aforementioned advan-
tages of the continuous and discrete approaches. Our approach consists of a
data-driven dynamic coupling between a continuous tracker and a novel dis-
crete shape estimation method. Our discrete tracker utilizes a database, which
contains object shape sequences, instead of single shape samples, introducing
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a temporal continuity constraint. The two trackers work in parallel, giving
solutions for each frame separately. While a tightly coupled system would
require high computational complexity, our framework chooses instantly the
best solution from the two trackers, based on an error. This is the actual 3D
error, i.e., the difference between the expected 3D shape and the estimated
one. When tracking objects with high dofs and abrupt motions, it is difficult
to obtain such 3D information, since there is no ground-truth shape available.
In our framework, we learn off-line the 3D shape error, based on the 2D ap-
pearance error, i.e., the difference between the tracked object’s edges and the
edges of the utilized model’s projection on the image plane. For this learning
we use Support Vector Regression (SVR).

We apply our framework to 3D hand tracking, with particular atten-
tion to the case of American Sign Language (ASL) analysis. So far, only
2D tracking schemes have been applied to ASL and the recognition is based
on estimated 2D features, which serve as observations for learning schemes
such as HMMs [24,25]. In our work, we use the obtained 2D and 3D informa-
tion for the discrimination between fingerspelling and non-fingerspelled signs
in ASL, which is a crucial problem in the recognition task. This is because
the internal linguistic structure of these two types of signs differs signifi-
cantly, and thus the strategies required for recognition of these signs must
differ accordingly. Also, we chose to use this application for our approach
because of the large fingerspelling segmentation ground-truth available. (The
video data and annotations are available to the research community from
http://www.bu.edu/asllrp/cslgr/.).

This chapter is organized as follows. In the next subsection, we give a brief
description of previous work on 3D hand tracking. In Section 6.2 we describe
our framework and its individual parts: (a) the existing continuous tracking
we use, in 6.2.1, (b) our discrete tracking method with its individual parts, in
6.2.2, namely the database, the 2D single-frame features, the multi-frame fea-
tures, and the matching between the database samples and the input frames,
(c) the dynamic coupling in subsection 6.2.3, and (d) the feature extraction
in cluttered backgrounds in 6.2.4. In Section 6.3 we present our results on
the 3D hand tracking, focusing on the case of ASL, including fingerspelling
discrimination, in 6.3.1. Finally, in Section 6.4 we describe our conclusions
and our future work.

6.2 Our Approach

The parts that our method consists of are: (i) a continuous tracker, (for the
case of hand tracking we use the model-based tracker described in subsection
6.2.1), (ii) our novel discrete tracker, described in subsection 6.2.2, and (iii)
the error-based coupling between the two trackers, described in subsection
6.2.3.
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Fig. 6.1. Graphic representation of our overall scheme: (i) model-based continuous
tracker giving solution yc(t) at an instance t, from the previous solution
yc(t − 1) and the input observation Xt, (ii) our discrete tracker that utilizes a clus-
tered database S, consisting of shape sequences s, and uses the N +1 most recently
received observations, and (iii) the data-driven coupling of the two trackers, based
on the 3D error of the continuous tracker.

Our framework is shown in Figure 6.1. A continuous tracker gives solution
yc(t) at any time t for the tracked object’s 3D shape, from the previously
estimated shape yc(t − 1) and the input 2D image cues Xt. In parallel, a
discrete tracker gives solution yd(t) at each time t independently. For this
module, a database S is constructed, consisting of short shape sequences of
the object’s template. For search efficiency purposes, the database is clustered
manually (off-line) into P clusters of L sample sequences s. Each cluster is
represented as Sp, where p = 1, . . . , P . At each time t, we first find the best
matching cluster Ŝ, where the tracker’s solution is located. According to the
properties of the tracked object we can use different geometric features from
the recent N +1 frames for the cluster selection . In our application of the 3D
hand tracking, the current observation Xt and the observation at time t−N are
used to find the most appropriate database cluster Ŝ, as explained in Sections
6.2.2 and 6.2.3. Then, the N +1 most recent observations (Xt−N , . . . , Xt) are
used to describe the shape changes over the N + 1 most recent input frames.
These observations are integrated into a quantity xt, after dimensionality
reduction. As will be explained below, dimensionality reduction is used for
matching efficiency, without significant loss of information. This quantity is
used to search into the located cluster Ŝ for the best matching shape sequence
ŝ. After ŝ is found, the configuration of the last shape of this sample sequence
is derived as the solution yd(t) of the discrete tracker at time t.

For each time t, two independent solutions are being derived from a contin-
uous and a discrete tracker. The third part of our framework is the selection
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of the best solution, according to an error indication; that is, based on an
indication, when the continuous tracking fails, we use the discrete method for
model re-initialization. The continuous tracker’s solution (3D model) is pro-
jected onto the image plane, and the difference between the tracked object’s
2D shape and the 2D model projection is calculated. This is what we call
2D tracking error e2D(t) and it will be defined below. As we show in Section
6.2.3, this 2D error is not a sufficient indication of how well a 3D tracker
performs, since a small 2D error may correspond to two completely differ-
ent 3D shapes. To obtain the actual 3D shape error, we apply off-line learn-
ing (Support Vector Regression) for the correspondence between 2D and 3D
errors, exploiting information from the database used for our discrete tracker.
Having the 3D error of the continuous tracker, we calculate the switching
parameter Q(t) = {−1, 1} (switching between trackers at time t). According
to the value of Q(t), we either use the continuous (Q(t) = 1) or the discrete
tracker (Q(t) = −1).

The main advantage of having two independent solutions, and choosing one
of them as final result, is the lower complexity, compared to a more tightly
coupled framework; in a tightly coupled system, the solution of one tracker
would depend on the performance of the other, or the final solution would
be a fusion of the two independent solutions. Both cases would need explicit
description of which part of the object is tracked well with one or the other
method. Also, learning the correspondence between the 2D and 3D errors,
with prior knowledge about the continuous tracker’s failures, is a more robust
approach than just using a threshold for the directly calculated 2D tracking
error.

Finally we should note that our generic framework could be used for dif-
ferent types of trackers. In our application we used our existing model-based
continuous tracker of [10], and our novel discrete tracker that is explicitly
described in this chapter. We developed the latter such that it can work with
efficiency in the specific framework. One could modify this scheme using a
different continuous method or using another discrete tracker such as the
methods of [3, 17].

6.2.1 Continuous Tracking

In the model-based continuous tracking of [10] that we use in our framework,
2D edge-driven forces, optical flow, and shading are computed. They are con-
verted into 3D features using a perspective camera model, and the results are
used to calculate velocity, acceleration, and the new position of the hand. A
Lagrangian second order dynamic hand model is used to predict finger mo-
tion between the previous and the current frame. A model shape refinement
process is also used, based on the error from the cue constraints, to improve
the fitting of the 3D hand model onto the input data.

At each frame visibility checking is performed in order to match correctly
image and model points. The computation of the relative motion to the palm
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of occluded fingers, is based on the rigid motion of the hand. When the relative
motion is not too large, the finger edges are picked up when they reappear.
This method will fail when the fingers undergo significant relative motions
when occluded, and when the hand undergoes strong rotations. Since this
method actually belongs to the existing literature, we will not further describe
its details; the reader is therefore referred to the literature [10].

6.2.2 Discrete Tracking

For each input frame at time t of the examined sequence, we extract 2D fea-
tures Xt (what we have called observations so far), which will be used to
describe the current frame. From now on, we will call these features single-
frame features. Also, these features will be integrated with the respective fea-
tures of a number of past frames, Xt−1, . . . , Xt−N , to serve as multi-frame
descriptors xt, what we will call multi-frame features.

According to our discrete method, instead of matching between single
images as, e.g., in [3, 17], we perform multi-frame matching between the
most recent input frames and the samples from our synthetic hand data-
base, described in the next paragraph. The database search is efficient, when
the discrete tracking is used in our integrated framework, as illustrated in
Fig. 6.1. We search our clustered database in two steps: (i) according to a
subset of the single-frame features of Xt and Xt−N , namely the projection
information and the finger counting result (as described in 6.2.2), we find the
most appropriate database cluster Ŝ, and (ii) using the multi-frame features
xt, we search for the best matching sample sequence ŝ inside the chosen cluster
Ŝ. The last hand configuration is chosen as the solution yd(t) of the discrete
tracker for the input frame at time t. In this way, we are able to exclude fast
a large number of samples from our database and locate the solution in a
small subset (cluster). Also, taking into account the most recently estimated
hand configurations, we impose a temporal continuity constraint, which is not
as strict as in the case of the continuous tracker; therefore, we avoid multi-
ple matches from the database (characteristic of most of the existing discrete
methods) without any additional computational load.

The Database

Our synthetic hand model has 20 dofs, as shown in Figure 6.2, and its advan-
tage is the good skin texture, which can be used for hand edge extraction.

Similar to all of the discrete tracking approaches that utilize configura-
tion databases, the tracker’s accuracy and efficiency depend on the size of
the database, i.e., how many hand configuration sequences are included. To
demonstrate our framework, we have created 200 configuration sequences,
under 29 views, and each sequence has N + 1 frames. The choice of the sam-
ple length N +1 depends on the temporal information we want to take under
consideration. As explained below, we need N to be as small as possible for
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Fig. 6.2. Synthetic hand model with 20 dofs describing all possible articulations.

computational efficiency, but if N is too small we cannot obtain sufficient
temporal information. In our experiments we used N + 1 = 5 for 30fps
videos, which turned out to be optimal for both slow and fast hand move-
ments/articulations.

For each sample s we have stored the N + 1 joint angle sets, each set
containing 20 angles, corresponding to its successive hand configurations. We
have also extracted and stored (i) single-frame and (ii) multi-frame features
of each configuration sequence, as described below.

The database S is organized according to which side of the hand is visible
(projection information) in the last frame, and how many fingers are visible
in the first and last frame of each sample sequence. Thus, we have divided our
database into P = 108 clusters Sp (p = 1, . . . , P ), containing L = 54 samples
each, on average.

Figure 6.3 illustrates an example of three samples of the virtual hand data-
base. Each sample is a hand configuration sequence of length N + 1 = 5, and
all of these samples ((a)–(c)) correspond to the same hand gesture (under
different camera views). As mentioned above, the database is clustered man-
ually according to how many fingers are visible in the first (�1) and last (�5)
frame, and which view of the palm is visible in the last (�5) frame. Thus, these
three samples are assigned to different clusters, although they correspond to
the same hand gesture. Specifically, as will be explained in the following para-
graph, the last two samples ((b) and (c)) are assigned to the same cluster,
different from the cluster that the first sample (a) belongs to. We consider
that in both (b) and (c) samples there are all the fingers visible in the first
frame, only two fingers are visible in the last frame, and the knuckles view is
visible in the last frame. On the other hand, for the first sample, only three
fingers are visible in the first frame, one finger is visible in the last frame
and the palm is in its side view in the last frame. We calculate the number
of fingers that are visible using the 2D hand shape as described below. The
palm view is assigned manually.
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Fig. 6.3. Three different sample configuration sequences of the virtual hand data-
base: (b) and (c) belong to the same cluster, while (a) belongs to a different cluster
from the other two.

2D Single-frame Features

From every input frame, we extract both boundary and region-based features
of the captured hand.

1. Boundary-based:

Let C(i) = (x(i), y(i)) be the extracted hand contour on the image plane,
where (x(i), y(i)) are the cartesian coordinates of each contour point, with
i = 1, . . . , I. The curvature function of the contour is

K(i) =
ẋ(i)ÿ(i) − ẍ(i)ẏ(i)
[ẋ2(i) + ẏ2(i)]3/2

, (6.1)

where ẋ(i), ẏ(i) and ẍ(i), ÿ(i) are the first and second derivatives at location
i respectively. We locate the contour zero-crossings

z = {i ∈ [1, I − 1] : K(i) ·K(i + 1) < 0}, (6.2)

i.e., the points where the curvature changes sign. We evolve the contour using
gaussian smoothing in different scales σ:

x′(i) = x(i) ∗ g(i, σ), y′(i) = y(i) ∗ g(i, σ), (6.3)

where g(i, σ) = 1
σ·√2π

· e− i2

2σ2 , and for each scale we locate the new zero-
crossings. The evolution stops when no zero-crossings are found. We extract
the Curvature Scale Space (CSS) map [1, 11], and its peaks (most important
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maxima) indicate the most important zero-crossings of the contour, i.e., the
most preserved zero-crossings in the different scales. In this way curvature is
an efficient shape descriptor and the fact that it is not affine invariant allows
us to view shape changes under complex rotations and scaling.

2. Region-based:

Let E be the edge map of an input frame, extracted using the canny edge
detector. For all edge points (xe, ye) of the hand region, we calculate the
orientations ϑi ∈ [0, . . . , 180) and we extract the histogram Hϑ, as in [4, 19],
using a fixed number B of bins. In our application we used B = 50. The
orientation histogram can provide us with information about the edges in the
interior of the hand, especially when we have sequences of high resolution.
We should note that the number of edges in each orientation is normalized,
based on the total number of edges detected; in this way, we avoid the effects
of both missing edges and scaling that results to different edge resolution.

3. Projection information:

From the currently estimated hand configuration of the input video, we obtain
the pose information for the next frame, i.e., which side of the hand is visible
(palm, side or knuckles view), assuming that the hands’ global (palm) pose
does not change significantly in two successive frames.

4. Finger counting:

For each input frame we count the clearly visible fingers F , by calculating the
most important zero-crossings, as described in (i).

In Section 6.2.4 we discuss how we extract the hand edges and contour in
a cluttered background, for the calculation of the edge orientation histograms
and the CSS maps.

2D Multi-frame Features

In our database, we store hand configuration sequences, and instead of match-
ing between single frames, we match short sequences. In this way, we take into
account the N + 1 most recent frames of the input sequence, imposing a tem-
poral continuity constraint, less strict than the constraints of most continuous
tracking methods.

The first step of our database search is to find the most appropriate cluster.
For this step we use the projection information and the result of the finger
counting, in the same way as we use them to cluster our database. For the
projection information, we use the palm pose of the last estimated input hand
configuration.

The next step is to extract the hand temporal information from the most
recent N + 1 input frames, as hand movement (or hand shape changes) sig-
nature. This information will be used for matching between the input frames
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and the database samples inside the chosen cluster. From the single-frame
features, we use the hand curvatures and the edge orientation histograms to
describe the hand movements. To reduce the computational complexity of the
matching between the input frames and the database samples, we integrate
the successive curvatures and edge orientation histograms into two vectors.

Instead of matching I × (N + 1) matrices, for N + 1 CSS functions with I
points, and B× (N + 1) matrices, for N + 1 edge orientation histograms with
B bins, we follow dimensionality reduction, that can be expressed as follows.

For I points of an object contour and its CSS function (B bins of the edge
orientation histogram), over N + 1 successive frames of the input video seg-
ment, we assume that we have I points (B points) in an (N +1)-dimensional
space, and we can obtain I points (B points) in the 1D space with dimension-
ality reduction.

Thus, the problem is transformed into a dimensionality reduction task. For
the hand tracking application, we used the nonlinear local Isomap embeddings
proposed by Tenenbaum et al. [18], keeping (I,B) >> N + 1, to keep the
residual (mapping) error low. We chose to use Isomap, instead of using a
linear embedding, e.g., PCA (Principal Component Analysis), because we
have nonlinear degrees of freedom, and we are interested in a global hand
movement signature, i.e., a globally optimal solution [15].

Thus, if K = [Kn|n = 0, . . . , N ] and Hϑ = [Hϑ,n|n = 0, . . . , N ] are the sets
of N + 1 CSS functions Kn and edge orientation histograms Hϑ,n, extracted
over N + 1 frames, the embedded 1D multi-frame features are respectively,

k̃ = M (N+1,1)(K), and h̃ϑ = M (N+1,1)(Hϑ), (6.4)

where M (N+1,1) represents the Isomap embedding from the N + 1 to the 1
dimensional space.

Matching Between Input Frames and Samples

As matching criterion between the input frames and the database samples,
we use the undirected chamfer distance. In general, given two point sets A
and B, their undirected chamfer distance d(A,B) is defined by the forward
df (A,B) and backward db(A,B) distances:

df (A,B) =
1

‖A‖ ·
∑
ai∈A

min
bj∈B

‖ai − bj‖, (6.5)

db(A,B) =
1

‖B‖ ·
∑
bi∈B

min
aj∈A

‖aj − bi‖, (6.6)

d(A,B) = df (A,B) + db(A,B) (6.7)

Replacing A and B with the multi-frame features k̃(u) = [k̃i(u)|i =
1, . . . , I] and k̃(s) = [k̃i(s)|i = 1, . . . , I], where I is the number of contour
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points, we obtain the chamfer distance dk(u, s) between the embedded CSS
functions of the successive input frames u and the database configuration
sequence s, respectively.

Similarly, replacing A and B with h̃θ(u) = [h̃i
θ(u)|i = 1, . . . , B] and h̃θ(s) =

[h̃i
θ(s)|i = 1, . . . , B], where B is the number of bins, we obtain the respective

chamfer distance dh(u, s) between the embedded edge orientation histograms.
For a chosen database cluster Ŝ = Sp ∈ S, where S is the set of all clusters,

i.e., the entire database, p = 1, . . . , P , and a set of input frames u, the best
matching sample ŝ ∈ Ŝ (∈ S) is given by,

ŝ = arg min
s∈Ŝ

√
dk(u, s)2 + dh(u, s)2, (6.8)

6.2.3 Coupling Two Trackers

The main idea of our coupling is to obtain model reinitialization from the
discrete scheme when continuous tracking fails. This framework provides com-
putational efficiency and allows us to use different trackers as separate proce-
dures. The decision to choose as final solution the results of one or the other
tracker, at each time instance t, is obtained using the 2D error described
below.

If Ef
b (t) is the boundary edge set of the input frame and Em

b (t) is the
boundary edge set of the model projection onto the image plane, at time t,
then the 2D tracking error is defined as,

e2D(t) = d(Ef
b (t), Em

b (t)), (6.9)

where d(·) represents the chamfer distance given in Equations (6.5)–(6.7). The
tracking error defined above can serve only as an indication but does not give
the actual tracking error, i.e., the 3D configuration error. Sometimes the 2D
error is small but the estimated configuration is very different from the actual
one, especially for the fingers’ joint angles. Thus, we need to know the rela-
tionship between the 2D error, which is directly estimated from the current
frame of the input sequence and the corresponding estimated configuration,
and the actual 3D error, which is defined as,

e3D(t) =
ϕ∑

i=1

‖yi(t) − yc
i (t)‖2 (6.10)

where y(t) = [yi(t)|i = 1, . . . , ϕ] and yc(t) = [yc
i (t)|i = 1, . . . , ϕ] are the actual

(ground-truth) and estimated (using the continuous tracking) configurations
respectively, and ϕ is the number of the dofs. The 3D error cannot be extracted
directly from the input sequence since there is no ground-truth configuration
y(t) available for the tracked hand.

Let Q(t) be the decision parameter at time t, of choosing either the con-
tinuous or the discrete tracking results, yc(t) and yd(t) respectively. It is
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Q(t) = {1,−1}, where 1 stands for continuous and −1 stands for discrete,
and the decision is taken according to,

p(Q|e2D) =
∫

e3D

p(Q|e3D) · p(e3D|e2D)de3D (6.11)

where p(Q|e3D) is the probability density of the decision Q, given the 3D error
e3D, and p(e3D|e2D) is the probability density of having the 3D tracking error
e3D given the 2D error e2D.

To estimate the probability densities, we apply the continuous tracker to
a set of M samples of our database, compute the 2D and 3D errors from
Equations (6.9), (6.10), and mark the cases where tracking fails.

Thus, from the marked cases of the continuous tracking failure (Q = −1),
we have the probability at time t,

P (Q(t) |e3D(t)) =
M∑
i=1

p(Q(i) |e3D(i)) (6.12)

For the estimation of the probability P (e3D(t)|e2D(t)), we need to determine
the correspondence between the errors e3D and e2D, i.e., we need to estimate
a distribution f , such that

e3D = f(e2D) (6.13)

To estimate the distribution f , we apply off-line learning to the subset M of
our database, using Support Vector Regression [22] with gaussian kernel, and
Equation (6.13) can be rewritten as,

e3D = f(e2D, σsvr,a, b), (6.14)

where σsvr is the variance used for the kernel, a is the estimated set of
Lagrange multipliers and b is obtained using the Karush–Kuhn–Tucker (KKT)
conditions [7]. In the next section we describe the training and testing sets
used for the SVR learning, and we give the result for the estimated parameters
and the testing set.

6.2.4 2D Feature Extraction in Cluttered Background

In this section we describe how we obtain the 2D features used in the discrete
tracking approach, in cases where the background is cluttered, i.e., contains
strong edges close to the object boundaries.

The approach we follow consists of the following steps:

1. Skin color modelling: We collect different skin samples and we train a clas-
sifier to model the skin color. In our case we used an SVM. An alternative
way for the hand extraction is the method proposed by Viola et al. [23].

2. Edge detection: For every input frame, we extract all the edges using the
canny edge detector.
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3. Skin pixels classification: We classify the pixels of the input frame, into
skin and non-skin pixels, based on the SVM results.

4. Hand boundary edges extraction: Using the input frame’s edge map and
the skin classification results, we extract the boundary edges: each edge
on the hand boundaries must separate two regions, a skin and a non-skin
region.

5. Internal hand edges extraction: Similarly to the boundary edges, we
extract the internal hand edges: every edge in the interior of the hand
area must separate two similar skin regions.

6. Hand’s convex hull and contour estimation: From the extracted hand
edges, we estimate the hand’s convex hull and then its contour, using
an active contour. In our application we use a snake model.

The procedure described above can be seen in two examples. For the first
example, Figures 6.4 and 6.5 illustrate the hand edges and contour extraction
of a hand moving in cluttered background. Specifically, in Figure 6.4 each

(1) (1) (1)

(2) (2) (2)

(3) (3) (3)

Fig. 6.4. First example of hand edges extraction in cluttered background: edge
detection (left column), skin pixels classification (middle column), and the extracted
hand edges (right column).
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(1) (1)

(2) (2)

(3) (3)

Fig. 6.5. Convex hulls (left column) and contours (right column) for the example
of Figure 6.4.

row corresponds to a key-frame; the first column illustrates the results of
the canny edge detector (superimposed onto the original frames), the second
column shows the classification results (white pixels are the estimated skin
pixels), and the third column shows the extracted hand edges superimposed
onto the original frames. These results are used for the hand convex hull and
contour estimation, shown in Figure 6.5: each row corresponds to a key-frame,
the first column shows the convex hulls, and the second column illustrates the
final hand contours.
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(1) (1)

(2) (2)

(3) (3)

Fig. 6.6. Second example of hand edges extraction in cluttered background: edge
detection (left column) and the extracted hand edges (right column).

Figures 6.6 and 6.7 represent the second example of the hand edges and
contour extraction in cluttered background. In Figure 6.6 each row corre-
sponds to a key-frame, the first column shows the edge detection results, and
the second column shows the extracted hand edges. Figure 6.7 illustrates the
corresponding convex hulls (first column) and the final hand contours (second
column).

From these examples one can see that the hand edges and contours can
be extracted successfully and fast, in cases of cluttered background, where no
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(1) (1)

(2) (2)

(3) (3)

Fig. 6.7. Convex hulls (left column) and contours (right column) for the example
of Figure 6.6.

other skin regions exist. In cases where more skin regions exist, apart from the
tracked hand, we also rely on the trackers’ temporal continuity constraints to
choose the edges that correspond to the hand. If the tracked hand is moving
away from these undesired skin regions, the hand position is used to exclude
the undesired skin edges. In cases where the hand is moving close to or oc-
cluding the undesired skin regions, the hand model fits to these edges that
best satisfy the continuity assumptions.
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6.3 Experimental Results

In our experiments we used a Pentium-4, 3.06 GHz machine. We constructed
the virtual hand database described in Section 6.2.2 using the hand model
shown in Figure 6.2, with 20 dofs. As explained above, we created configu-
ration sequences, instead of single configurations, of length N + 1 = 5. In
practice, N + 1 represents the number of input frames we use for matching
in the database, i.e., the number of input frames we utilize for estimating
the current configuration in our discrete tracking. We choose N + 1 = 5, for
30fps input videos, as the minimum number of input frames that can provide
sufficient temporal information. For 200 gestures under 29 camera views, we
stored 5, 800 sample sequences, or 29, 000 configurations.

Along with the N + 1 joint angle sets, for each sample, we stored the
corresponding 2D single-frame features described in Section 6.2.2: (i) projec-
tion information, (ii) number of fingers visible, and the multi-frame features
described in Section 6.2.2: (i) embedded CSS functions and (ii) embedded
edge orientation histograms. It should be noted that for the multi-frame fea-
tures, larger values of N would result to higher residual error during the
Isomap dimensionality reduction. Also, we used fixed number of curvature
points I = 150 and orientation histogram bins B = 50.

We have clustered the database manually according to the stored single-
frame features, and we obtained P = 108 clusters of L = 54 sample sequences
each. While the average computational time for the continuous tracker is
5fps, the chosen number of samples in our database does not decrease our
system’s efficiency. Including more samples in the database would effect the
computational complexity of our framework.

In the SVR-based off-line learning, for the estimation of the distribution
f of Equation (6.14), we used M = 500 sample sequences of our database
as training set, and 100 samples for testing. All samples in the training set
include tracking failures. Figure 6.8 illustrates the SVR results (e3D = f(e2D)),
using σsvr = 1.5: x and y axes represent the 2D and 3D errors respectively.
For the training set we have {e3D = 0.3383, σ2

e3D
= 0.0744}, and {e2D =

5.9717, σ2
e2D

= 18.4998}, mean values and variances for the 3D and 2D errors
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Fig. 6.8. Support vector regression with σsvr = 1.5: e3D = f(e2D).
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(a) (b)

(c) (d)

Fig. 6.9. Continuous tracking failure due to fingers’ occlusions ((a)–(c)), and model
reinitialization (d) from the discrete tracker.

respectively; note that the 2D error is measured in pixels whereas the 3D error
is measured in radians. In this figure one can also see the case where small
2D errors do not necessarily indicate small 3D (actual) errors (steep part of
the distribution). This explains why the 2D projection error is not sufficient
to indicate tracking failures and justifies experimentally the reason why we
chose to use the 3D configuration error as tracking error.

A representative example of continuous tracking failure is illustrated in
Figure 6.9. The tracking results are shown superimposed onto the original
input frame in a simplified cyan grid. As mentioned in subsection 6.2.1, contin-
uous tracking fails when fingers undergo significant movements when occluded.
In key-frame (a), the ring and the little finger are occluded while the hand is
rotating and the fingers are articulating. After a few frames (key-frame (b)),
the ring finger appears but the continuous tracker does not fit the hand model
to the right ring finger position. After a few frames (key-frame (c)), both the
ring and the little finger appear, but the hand model fits in the wrong con-
figuration; the hand model also misfits onto the index finger. In Figure 6.9(d)
we show the model re-initialization; in our database we included a sample
with successive hand configurations similar to the hand movement in the last
5 input frames (including the key-frame (c)). Although the final configuration
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does not match exactly with the 3D configuration of the input hand, it serves
as a good model reinitialization for the continuous tracker. In this way we
avoid error accumulation that would occur using the continuous tracker after
the key-frame (c).

Figures 6.10 and 6.11 illustrate our framework results for two sequences.
Each column shows the original frame (left) and the final result (right). Specif-
ically, Fig. 6.10 shows the case of strong hand rotation without any significant
finger articulations, in 9 key-frames. The results are shown with the virtual
hand, even when continuous tracking is applied. Figure 6.11 shows a more
difficult case, where the hand undergoes not only complicated rotations but
also finger articulations. In this case, the time intervals where continuous
tracking was successfully applied are smaller, i.e., in the coupling framework
the discrete method initializes the hand model in more frames, based on the
corresponding 3D error.

(key-frames 1–5) (key-frames 6–9)

Fig. 6.10. Tracking results for strong hand rotation: in each column, the left images
are the original frames and the right images show the final result.
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(key-frames 1–15) (key-frames 16–30)

Fig. 6.11. Tracking results for strong hand rotation and finger articulations: in each
column, the left images are the original frames and the right images show the final
result.
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6.3.1 American Sign Language

Signs in American Sign Language (ASL) and other signed languages are
articulated through the use of particular handshapes, orientations, locations
of articulation relative to the body, and movements. Lexical signs are either
inherently one- or two-handed; that is, some signs are articulated by only one
hand, while others are necessarily articulated with both hands. (In addition,
there are some instances where a one-handed sign is mirrored on the other
hand and where a two-handed sign drops the nondominant hand.) During the
articulation of a sign, changes in handshape sometimes occur; however, the
number of allowable changes is limited (at most 3 handshapes are allowed
within a given sign).

However, finger-spelled signs in ASL – generally corresponding to proper
names and other borrowings from spoken language – are instead produced
by concatenation of handshapes that correspond to the alphabet of the dom-
inant spoken language (for ASL, this is English) [26]. In ASL, fingerspelled
words are articulated using one hand (usually the dominant one) in a specific
area of the signing space (in front of and slightly above the signer’s shoulder).
Unlike lexical signs, the number of handshapes in fingerspelled signs can be
greater than three. In addition, the handshape changes are much more rapid
than those found in the articulation of lexical signs, and there is greater inde-
pendence of the movements of individual fingers than is found in non-finger
spelled signs.

Clearly, recognition strategies for finger-spelling [5] must be fundamentally
different from those used to identify other types of signs. However, automatic
identification of finger-spelling portions within a fluent stream of signing is
nontrivial, as many of the same handshapes that are used as letters are also
used in the formation of other types of signs. Furthermore, there is a high
degree of co-articulation in finger-spelling [6]; so finger-spelling frequently
contains hand poses that deviate from the canonical handshapes of the letters
themselves.

The framework described in this chapter exploited certain properties of
finger-spelling to facilitate discrimination of finger-spelled and non-finger-
spelled signs: e.g., the fact that finger-spelling tends to occur in neutral space,
with relatively smaller displacements of the hands (although frequently a slight
gradual movement from left to right) and more rapid movements of individual
fingers than are typically found in production of other types of signs. For our
experiments, we used videos of native ASL signers collected and annotated at
Boston University as part of the American Sign Language Linguistic Research
Project (http://www.bu.edu/asllrp/), in conjunction with the National Cen-
ter for Sign Language and Gesture Resources. Transcription was performed
using SIgnStream (http://www.bu.edu/asllrp/SignStream/) and these anno-
tations served as ground truth for testing our algorithms. The video data and
annotations associated with this project are available to the research commu-
nity from http://www.bu.edu/asllrp/cslgr/.
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(key-frames 1–10) (key-frames 11–20)

Fig. 6.12. Tracking results for ASL: in each column, the left images are the original
frames and the right images show the final result.

In the experiment of Figure 6.12, we track a hand articulating sequentially
both fingerspelled letters and continuous signs, as the person is asking the
question, “Who did John see yesterday?” which in sign language is expressed
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by a fingerspelled word, J−O−H−N followed by three signs corresponding
roughly to the English words meaning SEE WHO YESTERDAY.

Our coupling method performs well even in this case, where there are
lighting changes and complicated background, which are handled by the con-
tinuous tracking method of [10]. In each column, the left images represent the
input frames and the right images show the final result.

For the discrimination between finger-spelling and continuous signs in
ASL, we use (i) the 2D hand displacements obtained from the contours ex-
tracted from the input frames, and (ii) the 3D information provided by our
framework. For the classification, we used an SVM. Our training set consists of
200 short ASL sequences, 100 for fingerspelling and 100 for continuous signs.
The testing set consists of 100 short ASL sequences.

More specifically, from the extracted contours used to estimate the cur-
vature functions, we obtain the successive hand positions xp on the image
plane. Figure 6.13 illustrates the SVM classification results using the 2D hand
displacements dxp/dt (x2-axis), and the estimated configuration changes (x1-
axis),

Dỹ =
1
ϕ

ϕ∑
i=1

dỹi/dt, (6.15)

where ỹ = [ỹi|i = 1, . . . , ϕ] are the estimated configurations and ϕ is the
number of the joint angles (dofs).

Table 6.1 shows the finger-spelling segmentation results for eight ASL
videos. The videos we used are annotated so that we know what is said
(signed) and we have as ground-truth the actual frames where finger-spelling
is performed. The first column shows the video number, the second column
shows the actual number of the finger-spelling segments in the sequence, the
third column represents the ground-truth finger-spelling frame windows, and
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Fig. 6.13. SVM classification results for finger-spelling segmentation: x1-axis de-
notes the estimated configuration changes, and x2-axis corresponds to the hand
displacements.
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Table 6.1. Finger-spelling segmentation results for eight ASL videos.

Video Segments Ground-truth Segmented finger spelling frames

(1) 1 (43–55) (36–57)
(2) 1 (151–181) (146–185)
(3) 1 (43 − 65) (45–69)
(4) 1 (71–81) (69–85)
(5) 2 (53–67, 87–101) (55–71, 85–101)
(6) 2 (51–69, 83–101) (46–73, 81–101)
(7) 2 (25–47, 145–173) (21–45, 143–175)
(8) 2 (21–29, 125–159) (19–31, 121–163)

the fourth column shows our segmentation results using the 2D hand dis-
placement and the 3D hand configuration changes. The main reason for the
difference between the actual and estimated boundaries is that before and
after the actual finger-spelling, there is increased finger articulation, which
does not correspond to the finger-spelling phase, but it is just a transition to
and from this phase.

6.4 Summary and Conclusions

We have presented a dynamic data-driven framework, coupling continuous
tracking with a novel discrete method for 3D object tracking in monocular
sequences. We have applied our generic framework to the case of 3D hand
tracking, since it is a very challenging task with a wide variety of applications.
We have shown how our approach handles articulations, rotations, abrupt
movements and cluttered background. We have shown how our framework is
applied in the case of American Sign Language and how we discriminate be-
tween fingerspelling and non-finger-spelled signs. Our aim is to further evolve
our framework to be used for tracking of a much larger type of articulated and
nonrigid motions. We plan to extend our work on ASL recognition using both
2D and 3D information. We are currently working on constructing a more
realistic hand database for ASL recognition, replacing the artificially created
samples with samples obtained by combining Immersion Corporation’s Cy-
berGlove, Polhemus’ Fastrack and Alias’ Mocap. Finally, we should note that
although a robust real-time hand tracking and ASL recognition system is a
very challenging aim and requires a lot of research effort to be solved in its
general form, our framework gives us promising results in terms of robustness
under complex and fast hand movements.
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Graphical Models for Human Motion
Modelling
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Summary. The human figure exhibits complex and rich dynamic behavior that
is both nonlinear and time-varying. To automate the process of motion modelling
we consider a class of learned dynamic models cast in the framework of dynamic
Bayesian networks (DBNs) applied to analysis and tracking of the human figure.
While direct learning of DBN parameters is possible, Bayesian learning formalism
suggests that hyperparametric model description that considers all possible model
dynamics may be preferred. Such integration over all possible models results in a
subspace embedding of the original motion measurements. To this end, we propose a
new family of Marginal Auto-Regressive (MAR) graphical models that describe the
space of all stable auto-regressive sequences, regardless of their specific dynamics.
We show that the use of dynamics and MAR models may lead to better estimates of
sequence subspaces than the ones obtained by traditional non-sequential methods.
We then propose a learning method for estimating general nonlinear dynamic system
models that utilizes the new MAR models. The utility of the proposed methods is
tested on the task of tracking 3D articulated figures in monocular image sequences.
We demonstrate that the use of MAR can result in efficient and accurate tracking
of the human figure from ambiguous visual inputs.

7.1 Introduction

modelling the dynamics of human figure motion is essential to many appli-
cations such as realistic motion synthesis in animation and human activity
classification. Because the human motion is a sequence of human poses, many
statistical techniques for sequence modelling have been applied to this prob-
lem. A dynamic Bayesian newtwork (DBN) is one method for motion mod-
elling that facilitates easy interpretation and learning. We are interested in
learning dynamic models from motion capture data using DBN formalisms
and dimensionality reduction methods.

Dimensionality reduction / subspace embedding methods such as Principal
Components Analysis (PCA), Multidimensional Scaling (MDS) [11], Gaussian
Process Latent Variable Models (GPLVM) [9] and others, play an important
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role in many data modelling tasks by selecting and inferring those features
that lead to an intrinsic representation of the data. As such, they have at-
tracted significant attention in computer vision where they have been used
to represent intrinsic spaces of shape, appearance, and motion. However, it
is common that subspace projection methods applied in different contexts do
not leverage inherent properties of those contexts. For instance, subspace pro-
jection methods used in human figure tracking [5,16,20,22] often do not fully
exploit the dynamic nature of the data. As a result, the selected subspaces
sometimes do not exhibit temporal smoothness or periodic characteristics of
the motion they model. Even if the dynamics are used, the methods employed
are sometimes not theoretically sound and are disjoint from the subspace se-
lection phase.

In this chapter we present a graphical model formalism for human motion
modelling using dimensionality reduction. A new approach to subspace
embedding of sequential data is proposed, which explicitly accounts for their
dynamic nature. We first model the space of sequences using a novel Marginal
Auto-Regressive (MAR) formalism. A MAR model describes the space of
sequences generated from all possible AR models. In the limit case MAR de-
scribes all stable AR models. As such, the MAR model is weakly-parametric
and can be used as a prior for an arbitrary sequence, without knowing the
typical AR parameters such as the state transition matrix. The embedding
model is then defined using a probabilistic GPLVM framework [9] with MAR
as its prior. A GPLVM framework is particularly well suited for this task
because of its probabilistic generative interpretation. The new hybrid GPLVM
and MAR framework results in a general model of the space of all nonlinear
dynamic systems (NDS). Because of this it has the potential to theoretically
soundly model nonlinear embeddings of a large family of sequences.

This chapter is organized as follows. We first justify modelling human
motion with subspace embedding. Next we define the family of MAR mod-
els and study some properties of the space of sequences modeled by MAR.
We also show that MAR and GPLVM result in a model of the space of all
NDS sequences and discuss its properties. The utility of the new framework
is examined through a set of experiments with synthetic and real data. In
particular, we apply the new framework to modelling and tracking of the 3D
human figure motion from a sequence of monocular images.

7.2 Related Work

Manifold learning approaches to motion modelling have attracted significant
interest in the last several years. Brand proposed nonlinear manifold learning
that maps sequences of the input to paths of the learned manifold [4]. Rosales
and Sclaroff [13] proposed the Specialized Mapping Architecture (SMA) that
utilizes forward mapping for the pose estimation task. Agarwal and Triggs [1]
directly learned a mapping from image measurement to 3D pose using Rele-
vance Vector Machine (RVM).
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However, with high-dimensional data, it is often advantageous to consider a
subspace of, e.g., the joint angles space that contains a compact representation
of the actual figure motion. Principal Component Analysis (PCA) [8] is the
most well-known linear dimensionality reduction technique. Although PCA
has been applied to human tracking and other vision application [12, 15, 21],
it is insufficient to handle the nonlinear behavior inherent to human mo-
tion. Nonlinear manifold embedding of the training data in low dimensional
spaces using isometric feature mapping (Isomap), Local linear (LLE) and spec-
tral embedding [3,14,19,24], have shown success in recent approaches [5, 16].
While these techniques provide point-based embeddings implicitly modelling
the nonlinear manifold through exemplars, they lack a fully probabilistic in-
terpretation of the embedding process.

The GPLVM, a Gaussian Processes [25] model, produces a continuous
mapping between the latent space and the high-dimensional data in a prob-
abilistic manner [9]. Grochow et al. [7] use a Scaled GPLVM (SGPLVM) to
model inverse kinematics for interactive computer animation. Tian et al. [20]
use a GPLVM to estimate the 2D upper body pose from the 2D silhouette
features. Recently, Urtasun et al. [22] exploit the SGPLVM for 3D people
tracking. However these approaches utilize simple temporal constraints in the
pose space that often introduce “dimensionality curse” to nonlinear track-
ing methods such as particle filters. Moreover, such methods fail to explicitly
consider motion dynamics during the embedding process. Our work addresses
both of these issues through the use of a novel marginal NDS model. Wang
et al. [23] introduced Gaussian Process Dynamical Models (GPDM) that uti-
lize the dynamic priors for embedding. Our work extends the idea to tracking
and investigates the impact of dynamics in the embedded space on tracking
in real sequences.

7.3 Dynamics modelling and Subspace Embedding

Because the human pose is typically represented by more than 30 parameters
(e.g., 59 joint angles in the marker-based motion capture system), modelling
human motion is a complex task. Suppose yt is a M -dimensional vector con-
sisting of joint angles at time t. modelling human motion can be formulated
as learning a dynamic system:

yt = h(y0,y1, ...,yt−1) + ut

where ut is a (Gaussian) noise process.
A common approach to modelling linear motion dynamics would be to

assume a T -th order linear auto-regressive (AR) model:

yt =
T∑

i=1

Aiyt−i + ut (7.1)
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where Ai is the auto-regression coefficients and ut is a noise process. For
instance, 2nd order AR models are sufficient for modelling of periodic motion
and higher order models lead to more complex motion dynamics. However, as
the order of the model increases the number of parameters grows as M2·T+M2

(transition and covariance parameters). Learning this set of parameters may
require large training sets and can be prone to overfitting.

Armed with the intuition that correlation between the limbs such as arms
and legs always exists for a certain motion, many researchers have exploited
the dynamics in the lower projection space rather than learned the dynamics
in the high-dimensional pose space for human motion modelling. By inducing
a hidden state xt of dimension N (M � N) satisfying the first-order Marko–
vian condition, modelling human motion is cast in the framework of dynamic
Bayesian networks (DBNs) depicted in Figure 7.1:

xt = f(xt−1) + wt

yt = g(xt) + vt

where f(·) is a transition function, g(·) represents any dimensional reduction
operation, and wt and vt are (Gaussian) noise processes.

The above DBN formalism implies that predicting future observation yt+1

based on the past observation data Yt
0 = {y0, . . . ,yt} can be stated as the

following inference problem:

P (yt+1|Yt
0) =

P (Yt+1
0 )

P (Yt
0)

=

∑
xt+1

· · ·∑
x0

P (x0)
∏t

i=0
P (xi+1|xi)

∏t+1

i=0
P (yi|xi)∑

xt
· · ·∑

x0
P (x0)

∏t−1

i=0
P (xi+1|xi)

∏t

i=0
P (yi|xi)

.

This suggests that the dynamics of the observation (pose) sequence Y posses
a more complicated form. Namely, the pose yt at time t becomes dependent
on all previous poses yt−1,yt−2, ... effectively resulting in an infinite order
AR model. However, such model can use a smaller set of parameters than
the AR model of Equation (7.1) in the pose space. Assuming a 1st-order
linear dynamic system (LDS) xt = Fxt−1 + w and the linear dimensionality
reduction process yt = Gxt +v where F is the transition matrix and G is the
inverse of the dimensionality reduction matrix, the number of parameters to be
learned is N2+N2+N ·M+M2 = 2N2+M ·(N+M) (N2 in F , NM in G and
N2 + M2 in the two noise covariance matrices for w and v). When N 
 M

.....

.....

x1

y1 y2

x2

yt

xt

y0

x0

Fig. 7.1. A graphical model for human motion modelling with the subspace mod-
elling.
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the number of parameters of the LDS representation becomes significantly
smaller than that of the “equivalent” AR model. That is, by learning both
the dynamics in the embedded space and the subspace embedding model, we
can effectively estimate yt given all Yt−1

0 at any time t using a small set of
parameters.

To illustrate the benefit of using the dynamics in the embedded space
for human motion modelling, we take 12 walking sequences of one subject
from CMU Graphics Lab Motion Capture Database [27] where the pose is
represented by 59 joint angles. The poses are projected into a 3D subspace.
Assume that the dynamics in the pose space and in the embedded space are
modeled using the 2nd-order linear dynamics. We perform leave-one-out cross-
validation for these 12 sequences – 11 sequences are selected as a training set
and the 1 remaining sequence is reserved for a testing set. Let Mpose be the
AR model in the pose space learned from this training set and Membed be the
LDS model in the latent space. Figure 7.2 shows the summary statistics of
the two negative log-likelihoods of P (Yn|Mpose) and P (Yn|Membed), where Yn

is a sequence reserved for testing.
The experiment indicates that with the same training data, the learned

dynamics in the embedded space models the unseen sequences better than
the dynamic model in the pose space. The large variance of P (Yn|Mpose) for

LDS (embed) AR (pose)

11

12

13

14

15

16

17

18

19

20

lo
g 

(−
lo

g 
P

(Y
⏐M

))

Dynamic Models

Fig. 7.2. Comparison of generalization abilities of AR (“pose”) and LDS (“embed”)
models. Shown are the medians, upper and lower quartiles (boxes) of the negative
log likelihoods (in log space) under the two models. The whiskers depict the total
range of the values. Note that lower values suggest better generalization properties
(fit to test data) of a model.
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different training sets also indicates the overfitting problem that is generally
observed in a statistical model that has too many parameters.

As shown in Figure 7.1, there are two processes in modelling human motion
using a subspace embedding. One is learning the embedding model P (yt|xt)
and the other is learning the dynamic model P (xt+1|xt). The problem of
the previous approaches using the dimensionality reduction in human motion
modelling is that these two precesses are decoupled into two separate stages
in learning. However, coupling the two learning processes results in the better
embedded space that preserves the dynamic nature of original pose space. For
example, if the prediction by the dynamics suggests that the next state will
be near a certain point we can learn the projection that retains the temporal
information better than naive projection disregarding this prior knowledge.
Our proposed framework formulates this coupling of the two learning processes
in a probabilistic manner.

7.4 Marginal Auto-Regressive Model

We develop a framework incorporating dynamics into the process of learning
low-dimensional representations of sequences. In this section, a novel marginal
dynamic model describing the space of all stable auto-regressive sequences is
proposed to model the dynamics of unknown subspace.

7.4.1 Definition

Consider sequence X of length T of N -dimensional real-valued vectors xt =
[xt,0xt,1...xt,N−1] ∈ �1×N . Suppose sequence X is generated by the 1st-order
AR model AR(A):

xt = xt−1A + wt, t = 0, ..., T − 1 (7.2)

where A is a specific N × N state transition matrix and wt is a white iid
Gaussian noise with precision, α: wt ∼ N (0, α−1I). Assume that, without loss
of generality, the initial condition x−1 has normal multivariate distribution
with zero mean and unit precision: x−1 ∼ N (0, I).

We adopt a convenient representation of sequence X as a T × N matrix
X = [x′

0x
′
1...x

′
T−1]

′ whose rows are the vector samples from the sequence.
Using this notation Equation (7.2) can be written as

X = XΔA + W

where W = [w′
0w

′
1...w

′
T−1]

′ and XΔ is a shifted/delayed version of X, XΔ =
[x′

−1x
′
0...x

′
T−2]

′ . Given the state transition matrix A and the initial condition,
the AR sequence samples have the joint density function

P (X|A,x−1) = (2π)−
NT
2 exp

{
−1

2
tr {(X − XΔA)(X − XΔA)′}

}
. (7.3)
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The density in Equation (7.3) describes the distribution of samples in a
T -long sequence for a particular instance of the state transition matrix A.
However, we are interested in the distribution of all AR sequences, regardless
of the value of A. In other words, we are interested in the marginal distribution
of AR sequences, over all possible parameters A.

Assume that all elements aij of A are iid Gaussian with zero mean and
unit precision, aij ∼ N (0, 1). Under this assumption, it can be shown [10]
that the marginal distribution of the AR model becomes

P (X|x−1, α) =
∫
A

P (X|A,x−1)P (A|α)dA

= (2π)−
NT
2 |Kxx(X,X)|−N

2 exp

{
−1

2
tr{Kxx(X,X)−1XX′}

}
(7.4)

where
Kxx(X,X) = XΔX′

Δ + α−1I. (7.5)

We call this density the Marginal AR or MAR density. α is the hyperparame-
ter of this class of models, MAR(α). Intuitively, Equation (7.4) favors those
samples in X that do not change significantly from t to t + 1 and t− 1. The
graphical representation of MAR model is depicted in Figure 7.3. Different
treatments to the nodes are represented by different shades.

MAR density models the distribution of all (AR) sequences of length T in
the space X = �T×N . Note that while the error process of an AR model has
Gaussian distribution, the MAR density is not Gaussian. We illustrate this
in Figure 7.4. The figure shows joint pdf values for four different densities:
MAR, periodic MAR (see Section 7.4.2), AR(2), and a circular Gaussian, in
the space of length-2 scalar-valued sequences [x0x1]′. In all four cases we as-
sume zero-mean, unit precision Gaussian distribution of the initial condition.
All models have the mode at (0, 0). The distribution of the AR model is mul-
tivariate Gaussian with the principal variance direction determined by the
state transition matrix A. However, the MAR models define non-Gaussian

.....

.....

x−1 x2x1 xT−1

A

x0

Fig. 7.3. Graphical representation of MAR model. White shaded nodes are opti-
mized while gray shaded node is marginalized.
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Fig. 7.4. Distribution of length-2 sequences of 1D samples under MAR, periodic
MAR, AR, and independent Gaussian models.

distributions with no circular symmetry and with directional bias. This prop-
erty of MAR densities is important when viewed in the context of sequence
subspace embeddings, which we discuss in Section 7.5.

7.4.2 Higher-Order Dynamics

The above definition of MAR models can be easily extended to families of
arbitrary D-th order AR sequences. In that case the state transition ma-
trix A is replaced by an ND × N matrix A = [A′

1A
′
2...A

′
D]′ and XΔ by

[XΔX1Δ...XDΔ]. Hence, a MAR(α,D) model describes a general space of all
D-th order AR sequences. Using this formulation one can also model specific
classes of dynamic models. For instance, a class of all periodic models can be
formed by setting A = [A′

1 − I]′, where I is an identity matrix.

7.4.3 Nonlinear Dynamics

In Equation (7.2) and Equation (7.4) we assumed linear families of dynamic
systems. One can generalize this approach to nonlinear dynamics of the form
xt = g(xt−1|ζ)A, where g(·|ζ) is a nonlinear mapping to an L-dimensional
subspace and A is a L × N linear mapping. In that case Kxx becomes a
nonlinear kernel using justification similar to, e.g. [9]. While nonlinear kernels
often have potential benefits, such as robustness, they also preclude closed-
form solutions of linear models. In our preliminary experiments we have not
observed significant differences between MAR and nonlinear MAR.

7.4.4 Justification of MAR Models

The choice of the prior distribution of AR model’s state transition matrix
leads to the MAR density in Equation (7.4). One may wonder, however, if the
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choice of iid N (0, 1) results in a physically meaningful space of sequences. We
suggest that, indeed, such choice may be justified.

Namely, Girko’s circular law [6] states that if 1
N A is a random N × N

matrix with N (0, 1) iid entries, then in the limit case of large N(> 20) all real
and complex eigenvalues of A are uniformly distributed on the unit disk. For
small N , the distribution shows a concentration along the real line. Conse-
quently, the resulting space of sequences described by the MAR model is that
of all stable AR systems.

7.5 Nonlinear Dynamic System Models

In this section we develop a Nonlinear Dynamic System view of the sequence
subspace reconstruction problem that relies on the MAR representation of
the previous section. In particular, we use the MAR model to describe the
structure of the subspace of sequences to which the extrinsic representation
will be mapped using a GPLVM framework of [9].

7.5.1 Definition

Let Y be an extrinsic or measurement sequence of duration T of M -
dimensional samples. Define Y as the T × M matrix representation of
this sequence, similar to the definition in Section 7.4, Y = [y′

0y
′
1...y

′
T−1]

′.
We assume that Y is a result of the process X in a lower-dimensional MAR
subspace X , defined by a nonlinear generative or forward mapping

Y = f(X|θ)C + V.

f(·) is a nonlinear �N → �L mapping, C is a linear L×M mapping, and V
is a Gaussian noise with zero-mean and precision β.

To recover the intrinsic sequence X in the embedded space from sequence
Y it is convenient not to focus, at first, on the recovery of the specific mapping
C. Hence, we consider the family of mappings where C is a stochastic matrix
whose elements are iid cij ∼ N (0, 1). Marginalizing over all possible mappings
C yields a marginal Gaussian Process [25] mapping:

P (Y|X, β, θ) =
∫
C

P (Y|X,C, θ)P (C|β)dC

= (2π)−
MT
2 |Kyx(X,X)|−M

2 exp

{
−1

2
tr{Kyx(X,X)−1YY′}

}
where

Kyx(X,X) = f(X|θ)f(X|θ)′ + β−1I.

Notice that in this formulation the X → Y mapping depends on the inner
product 〈f(X), f(X)〉. The knowledge on the actual mapping f is not nec-
essary; a mapping is uniquely defined by specifying a positive-definite kernel
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Fig. 7.5. Graphical model of NDS. White shaded nodes are optimized while gray-
shaded node is marginalized and black-shaded nodes are observed variables.

Kyx(X,X|θ) with entries Kyx(i, j) = k(xi,xj) parameterized by the hyperpa-
rameter θ. A variety of linear and non-linear kernels (RBF, square exponential,
various robust kernels) can be used as Kyx. Hence, our likelihood model is a
nonlinear Gaussian process model, as suggested by Lawrence [9]. Figure 7.5
shows the graphical model of NDS.

By joining the MAR model and the NDS model, we have constructed a
Marginal Nonlinear Dynamic System (MNDS) model that describes the joint
distribution of all measurement and all intrinsic sequences in a Y × X space:

P (X,Y|α, β, θ) = P (X|α)P (Y|X, β, θ). (7.6)

The MNDS model has a MAR prior P (X|α), and a Gaussian process likelihood
P (Y|X, β, θ). Thus it places the intrinsic sequences X in the space of all AR
sequences. Given an intrinsic sequence X, the measurement sequence Y is
zero-mean normally distributed with the variance determined by the nonlinear
kernel Kyx and X.

7.5.2 Inference

Given a sequence of measurements Y one would like to infer its subspace
representation X in the MAR space, without needing to first determine a
particular family of AR models AR(A), nor the mapping C. Equation (7.6)
shows that this task can be, in principle, achieved using the Bayes rule
P (X|Y, α, β, θ) ∝ P (X|α)P (Y|X,β, θ).

However, this posterior is non-Gaussian because of the nonlinear mapping
f and the MAR prior. One can instead attempt to estimate the mode X∗

X∗ = arg max
X

{logP (X|α) + logP (Y|X, β, θ)}

using nonlinear optimization such as the Scaled Conjugate Gradient in [9].
To effectively use a gradient-based approach, one needs to obtain expres-

sions for gradients of the log-likelihood and the log-MAR prior. Note that the
expressions for MAR gradients are more complex than those of, e.g., GP due
to a linear dependency between X and XΔ (see Appendix).
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7.5.3 Learning

MNDS space of sequences is parameterized using a set of hyperparameters
(α, β, θ) and the choice of the nonlinear kernel Kyx. Given a set of sequences
{Y(i)}, i = 1, .., S the learning task can be formulated as the ML/MAP esti-
mation problem

(α∗, β∗, θ∗)|Kyx
= arg max

α,β,θ

S∏
i=1

P (Y(i)|α, β, θ).

One can use a generalized EM algorithm to obtained the ML parameter esti-
mates recursively from two fixed-point equations:

E-step X(i)∗ = arg maxX P (Y,X(i)|α∗, β∗, θ∗)
M-step (α∗, β∗, θ∗) = arg max(β,α,θ)

∏S
i=1 P (Y(i),X(i)∗|α, β, θ)

7.5.4 Learning of Explicit NDS Model

Inference and learning in MNDS models result in the embedding of the mea-
surement sequence Y into the space of all NDS/AR models. Given Y, the
embedded sequences X estimated in Section 7.5.3 and MNDS parameters
α, β, θ, the explicit AR model can be easily reconstructed using the ML esti-
mation on sequence X, e.g.:

A∗ = (X′
ΔXΔ)−1X′

ΔX.

Because the embedding was defined as a GP, the likelihood function
P (yt|xt, β, θ) follows a well-known result from GP theory: yt|xt ∼ N (μ, σ2I)

μ = Y′Kyx(X,X)−1Kyx(X,xt) (7.7)

σ2 = Kyx(xt,xt) − Kyx(X,xt)′Kyx(X,X)−1Kyx(X,xt). (7.8)

The two components fully define the explicit NDS.
In summary, a complete sequence modelling algorithm consists of the fol-

lowing set of steps.

Algorithm 1 NDS learning

INPUT Measurement sequence Y and kernel family Kyx

OUTPUT NDS(A, β, θ)

1. Learn subspace embedding MNDS(α, β, θ) model of training sequences Y as
described in Section 7.5.3.
2. Learn explicit subspace and projection model NDS(A, β, θ) of Y as described
in Section 7.5.4.
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7.5.5 Inference in Explicit NDS Model

The choice of the nonlinear kernel Kyx results in a nonlinear dynamic system
model of training sequences Y. The learned model can then be used to infer
subspace projections of a new sequence from the same family. Because of the
nonlinearity of the embedding, one cannot apply the linear forward–backward
or Kalman filtering/smoothing inference. Rather, it is necessary to use non-
linear inference methods such as (I)EKF or particle filtering/smoothing.

It is interesting to note that one can often use a relatively simple sequential
nonlinear optimization in place of the above two inference methods:

x∗
t = arg max

xt

P (yt|xt, β
∗, θ∗)P (xt|x∗

t−1,A
∗).

Such sequential optimization yields local modes of the true posterior P (X|Y).
While one would expect such approximation to be valid in situations with few
ambiguities in the measurement space and models learned from representative
training data, our experiments show the method to be robust across a set of
situations. However, dynamics seem to play a crucial role in the inference
process.

7.5.6 Example

We illustrate the concept of MNDS on a simple synthetic example. Consider
the AR model AR(2) from Section 7.4. Sequence X generated by the model
is projected to the space Y = �2×3 using a linear conditional Gaussian model
N (XC, I). Figure 7.6 shows negative likelihood over the space X of the MNDS,
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Fig. 7.6. Negative log-likelihood of length-2 sequences of 1D samples under MNDS,
GP with independent Gaussian priors, GP with exact AR prior and LDS with the
true process parameters. “o” mark represents the optimal estimate X∗ inferred from
the true LDS model. “+” shows optimal estimates derived using the three marginal
models.
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Fig. 7.7. Normalized histogram of optimal negative log-likelihood scores for MNDS,
a GP model with a Gaussian prior, a GP model with exact AR prior and LDS with
the true parameters.

a marginal model (GP) with independent Gaussian priors, a GP with the
exact AR(2) prior, and a full LDS with exact parameters. All likelihoods are
computed for the fixed Y. Note that the GP with Gaussian prior assumes no
temporal structure in the data. This example shows that, as expected, the
maximum likelihood subspace estimates of the MNDS model fall closer to the
“true” LDS estimates than those of the nonsequential model. This property
holds in general. Figure 7.7 shows the distribution of optimal negative log
likelihood scores, computed at corresponding X∗, of the four models over a
10000 sample of Y sequences generated from the true LDS model. Again,
one notices that MNDS has a lower mean and mode than the nonsequential
model, GP+Gauss, indicating MNDS’s better fit to the data. This suggests
that MNDS may result in better subspace embeddings than the traditional
GP model with independent Gaussian priors.

7.6 Human Motion Modelling Using MNDS

In this section we consider an application of MNDS to modelling of the human
motion from sequences of video images. Specifically, we assume that one wants
to recover two important aspects of human motion: (1) 3D posture of the
human figure in each image and (2) an intrinsic representation of the motion.

We propose two models in this context. The first model (Model 1) is a fully
generative model that considers the natural way of image formation. Given the
3D pose space represented by joint angles yt, the mapping into a sequence of
features zt computed from monocular images (such as the silhouette-based alt
moments, orientation histograms etc.) is given by a Gaussian process model
P (Z|Y, θzy). An NDS is used to model the space Y × X of poses and in-
trinsic motions P (X,Y|A, β, θyx). The second model (Model 2) relies on the
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Fig. 7.8. Graphical Models for human motion modelling using MNDS. Left: model
1. Right: model 2.

premise that the correlation between the pose and the image features can be
modeled using a latent-variable model. In this model, the mapping into the
image feature space from the intrinsic space is given by a Gaussian process
model P (Z|X, θzx). The model for the space of poses and intrinsic motions
is defined in the same way as the first model. Similar models are often used
in other domains such as computational language modelling to correlate com-
plex processes. The graphical models of these two approaches are shown in
Figure 7.8.

7.6.1 Model 1

When the dimension of image feature vector zt is much smaller than the
dimension of pose vector yt (e.g., 10-dimensional vector of alt Moments vs.
59-dimensional joint angle vector of motion capture data), estimating the pose
given the feature becomes the problem of predicting a higher-dimensional
projection in the model P (Z|Y, θzy). It is an undetermined problem. In this
case, we can utilize the practical approximation by modelling P (Y|Z) rather
than P (Z|Y) – it yielded better results and still allowed a fully GP-based
framework. That is to say, the mapping into the 3D pose space from the feature
space is given by a Gaussian process model P (Y|Z, θyz) with a parametric
kernel Kyz(zt, zt|θyz).

As a result, the joint conditional model of the pose sequence Y and intrinsic
motion X, given the sequence of image features Z is approximated by

P (X,Y|Z,A, β, θyz , θyx) ≈ P (Y|Z, θyz)P (X|A)P (Y|X, β, θyx).

Learning

In the training phase, both the image features Z and the corresponding poses
Y are known. Hence, the learning of GP and NDS models becomes decoupled
and can be accomplished using the NDS learning formalism presented in the
previous section and a standard GP learning approach [25].
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Algorithm 2 Human motion model learning

INPUT Image sequence Z and joint angle sequence Y
OUTPUT Human motion model

1. Learn Gaussian Process model P (Y|Z, θyz) using e.g. [25].
2. Learn NDS model P (X,Y|A, β, θyx) as described in Section 7.5.

Inference and Tracking

Once the models are learned they can be used for tracking of the human fig-
ure in video. Because both NDS and GP are nonlinear mappings, estimating
current pose yt given a previous pose and intrinsic motion space estimates
P (xt−1,yt−1|Z0..t) will involve nonlinear optimization or linearizion, as sug-
gested in Section 7.5.5. In particular, optimal point estimates x∗

t and y∗
t are

the result of the following nonlinear optimization problem:

(x∗
t ,y

∗
t ) = arg max

xt,yt

P (xt|xt−1,A)P (yt|xt, β, θyx)P (yt|zt, θyz). (7.9)

The point estimation approach is particularly suited for a particle-based
tracker. Unlike some traditional approaches that only consider the pose space
representation, tracking in the low-dimensional intrinsic space has the poten-
tial to avoid problems associated with sampling in high-dimensional spaces.

A sketch of the human motion tracking algorithm using particle filter with
NP particles and weights (w(i), i = 1, ..., NP ) is shown below. We apply this
algorithm to a set of tracking problems described in Section 7.7.2.

Algorithm 3 Particel filter in human motion tracking

INPUT Image zt, Human motion model (GP+NDS) and prior point estimates

(w
(i)
t−1,x

(i)
t−1,y

(i)
t−1)|Z0..t−1, i = 1, ..., NP

OUTPUT Current pose/intrinsic state estimates (w
(i)
t ,x

(i)
t ,y

(i)
t )|Z0..t, i =

1, ..., NP

1. Draw the initial estimates x
(i)
t ∼ p(xt|x(i)

t−1,A).

2. Compute the initial poses y
(i)
t from the initial x

(i)
t and NDS model.

3. Find optimal estimates (x
(i)
t ,y

(i)
t ) using nonlinear optimization in Equa-

tion (7.9).

4. Find point weights w
(i)
t ∼ P (x

(i)
t |xt−1,A)P (y

(i)
t |x(i)

t , β, θyx)P (y
(i)
t |zt, θyz).

7.6.2 Model 2

Given the sequence of image feature Z, the joint conditional model of the pose
sequence Y and the corresponding embedded sequence X is expressed as
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P (X,Y|Z,A, β, θzx, θyx) = P (Z|X, θzx)P (X|A)P (Y|X, β, θyx).

Comparing with Model 1, this model needs no approximation related to the
dimension of the image features.

Learning

Given both the sequence of poses and corresponding image features, a gener-
alized EM algorithm as in Section 7.5.3 can be used to learn a set of model
parameters (A, β, θzx, θyx).

Algorithm 4 Human motion model learning with EM

INPUT Image sequence Z and joint angle sequence Y
OUTPUT Human motion model

E-step X∗ = arg maxX P (X,Y|Z,A∗, β∗, θ∗
zx, θ∗

yx)
M-step (A∗, β∗, θ∗

zx, θ∗
yx) = arg max(A,β,θzx,θyx) P (X∗,Y|Z,A, β, θzx, θyx)

Inference and Tracking

Once the model is learned the joint probability of the pose Y and the image
features Z can be approximated by

P (Y,Z) ≈ P (Y,Z,X∗) = P (Y|X∗)P (Z|X∗)P (X∗)

where
X∗ = arg max

X
P (X|Y,Z).

Because we have two conditionally independent GPs, estimating current pose
(distribution) yt and estimating current point xt in the embedded space can
be separated. First the optimal point estimate x∗

t is the result of the following
optimization problem:

x∗
t = arg max

xt

P (xt|xt−1,A)P (zt|xt, β, θzx). (7.10)

A particle-based tracker is utilized to estimate the optimal xt as tracking with
the previous Model 1. A sketch of this procedure using particle filter with NP

particles and weights (w(i), i = 1, ..., NP ) is shown below.
After estimating the optimal x∗

t , we can easily compute the distribution
of the pose yt by using the same result from GP theory as Equation 7.7 and
Eqaution 7.8 in Section 7.5.4. Note that Model 2 does explicitly provide the
estimates of pose variance, which Model 1 does not. The mode can be selected
as the final pose estimate:

y∗
t = Y′Kyx(X,X)−1Kyx(X,x∗

t ).
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Algorithm 5 Particel filter in human motion tracking

INPUT Image zt, Human motion model (NDS) and prior point estimates

(w
(i)
t−1,x

(i)
t−1,y

(i)
t−1)|Z0..t−1, i = 1, ..., NP

OUTPUT Current intrinsic state estimates (w
(i)
t ,x

(i)
t )|Z0..t, i = 1, ..., NP

1. Draw the initial estimates x
(i)
t ∼ p(xt|x(i)

t−1,A).

2. Find optimal estimates x
(i)
t using nonlinear optimization in Equation (7.10).

3. Find point weights w
(i)
t ∼ P (x

(i)
t |xt−1,A)P (z

(i)
t |x(i)

t , β, θzx).

7.7 Experiments

7.7.1 Synthetic Data

In our first experiment we examine the utility of MAR priors in a subspace
selection problem. A 2nd order AR model is used to generate sequences in a
�T×2 space; the sequences are then mapped to a higher dimensional nonlinear
measurement space. An example of the measurement sequence, a periodic
curve on the Swiss-roll surface, is depicted in Figure 7.9.

We apply two different methods to recover the intrinsic sequence sub-
space: MNDS with an RBF kernel and a GPLVM with the same kernel and
independent Gaussian priors. Estimated embedded sequences are shown in
Figure 7.10. The intrinsic motion sequence inferred by the MNDS model more
closely resembles the “true” sequence in Figure 7.9. Note that one dimension
(blue/dark) is reflected about the horizontal axis, because the embeddings are
unique up to an arbitrary rotation. These results confirm that proper dynamic
priors may have crucial role in learning of embedded sequence subspaces. We
study the role of dynamics in tracking in the following section.

7.7.2 Human Motion Data

We conducted experiments using a database of motion capture data for a 59
d.o.f body model from CMU Graphics Lab Motion Capture Database [27].
Figure 7.11 shows the latent space resulting from the original GPLVM and
our MNDS model. Note that there are breaks in the intrinsic sequence of the
original GPLVM. On the other hand, the trajectory in the embedded space of
MNDS model is smoother, without sudden breaks. Note that the precisions
for the points corresponding to the training poses are also higher in our MNDS
model.

For the experiments on human motion tracking, we utilize synthetic images
as our training data similar to [1,20]. Our database consists of seven walking
sequences of around 2000 frames total. The data was generated using the
software (3D human model and Maya binaries) generously provided by the
authors of [17,18]. We train our GP and NDS models with one sequence of 250
frames and test on the remaining sequences. In our experiments, we exclude
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Fig. 7.9. A periodic sequence in the intrinsic subspace and the measured sequence
on the Swiss-roll surface.

15 joint angles that exhibit small movement during walking (e.g., clavicle and
figures joint) and use the remaining 44 joints. Our choice of image features are
the silhouette-based Alt moments used in [13,20]. The scale and translational
invariance of Alt moments makes them suitable to a motion modelling task
with little or no image-plane rotation.

In the model learning phase we utilize the approach proposed in
Section 7.5. Once the model is learned, we apply the two tracking/inference
approaches in Section 7.6 to infer motion states and poses from sequences of
silhouette images. The pose estimation results with the two different models
show no much difference. The big difference between two models is the speed,
which we discuss in the following Section 7.7.3.

Figure 7.12 depicts a sequence of estimated poses. The initial estimates
for gradient search are determined by the nearest neighborhood matching in
the Alt moments space alone. To evaluate our NDS model, we estimate the
same input sequence with the original GPLVM tracking in [20]. Although
the silhouette features are informative for human pose estimation, they are
also prone to ambiguities such as the left/right side changes. Without proper
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Fig. 7.10. Recovered embedded sequences. Left: MNDS. Right: GPLVM with iid
Gaussian priors.
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Fig. 7.12. Firs row: Input image silhouettes. Remaining rows show reconstructed
poses. Second row: GPLVM model. Third row: NDS model.

dynamics modelling, the original GPLVM fails to estimate the correct poses
because of this ambiguity.

The accuracy of our tracking method is evaluated using the mean RMS
error between the true and the estimated joint angles [1], D(y,y′) =
1
44

∑44
i=1 |(yi − y′

i)mod ± 180◦|. The first column of Figure 7.13 displays
the mean RMS errors over the 44 joint angles, estimated using three different
models. The testing sequence consists of 320 frames. The mean error for NDS
model is in range 3◦ ∼ 6◦. The inversion of right and left legs causes significant
errors in the original GPLVM model. Introduction of simple dynamics in the
pose space similar to [22] was not sufficient to rectify the “static” GPLVM
problem. The second column of Figure 7.13 shows examples of trajectories
in the embedded space corresponding to the pose estimates with the three
different models. The points inferred from our NDS model follow the path
defined by the MAR model, making them temporally consistent. The other
two methods produced less-than-smooth embeddings.

We applied the algorithm to tracking of various real monocular image
sequences. The data used in these experiments was the sideview sequence in
CMU mobo database made publicly available under the HumanID project [26].
Figure 7.14 shows one example of our tracking result. This testing sequence
consists of 340 frames. Because a slight mismatch in motion dynamics between
the training and the test sequences, reconstructed poses are not geometrically
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Fig. 7.13. Mean angular pose RMS errors and 2D latent space trajectories. First
row: tracking using our NDS model. Seconde row: original GPLVM tracking. Third
row: tracking using simple dynamics in the pose space.

perfect. However the overall result sequence depicts a plausible walking motion
that agrees with the observed images.

It is also interesting to note that in a number of tracking experiments it
was sufficient to carry a very small number of particles (∼1) in the point-
based tracker of Algorithm 3 and Algorithm 5. In most cases all particles
clustered in a small portion of the motion subspace X , even in ambiguous
situations induced by silhouette-based features. This indicates that the pres-
ence of dynamics had an important role in disambiguating statically similar
poses.
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Fig. 7.14. First row: input real walking images. Second row: image silhouettes.
Third row: images of the reconstructed 3D pose.

7.7.3 Complexity Comparison

Our experimental results show that Model 1 and Model 2 exhibit similar accu-
racies of estimating poses. The distinctive difference between the two models
is the complexity in the learning and inference stages. The complexity in
computing the objective function in the GPLVM is proportional to the di-
mension of a observation (pose) space. For the approximation of Model 1, a
44 dimensional pose is the observation for the two GP models, P (Y|X) and
P (Y|Z). However, for Model 2 the pose is the observation for only one GP
model P (Y|X) and the observation of the other GP model P (Z|X) (Alt Mo-
ments) has only 10 dimensions. This makes learning of Model 2 less complex
than learning of Model 1. In addition, in inference only the latent variable
(e.g. 3-dimension) is optimized in Model 2 while the optimization in Model 1
deals with both the latent variable and the pose (3-dimensions + 44-dimension
in our experiments). As a result, Model 2 requires significantly fewer itera-
tions of the nonlinear optimization search, leading to potentially more suitable
algorithm for real-time tracking.

7.8 Conclusions

We proposed a novel method for embedding of sequences into subspaces of
dynamic models. In particular, we propose a family of marginal AR (MAR)
subspaces that describe all stable AR models. We show that a generative non-
linear dynamic system (NDS) can then be learned from a hybrid of Gaussian
(latent) process models and MAR priors, a marginal NDS (MNDS). As a
consequence, learning of NDS models and state estimation/tracking can be
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formulated in this new context. Several synthetic examples demonstrate the
potential utility of the NDS framework and display its advantages over tradi-
tional static methods in dynamic domains. We also test the proposed approach
on the problem of the 3D human figure tracking in sequences of monocular
images. Our preliminary results indicate that dynamically constructed em-
beddings using NDS can resolve ambiguities during tracking that may plague
static as well as less principled dynamic approaches.

In our future work we plan to extend the set of evaluations and gather
more insight into theoretical and computational properties of MNDS with
linear and nonlinear MARs. In particular, our ongoing experiments address
the posterior multimodality in the embedded spaces, an issue relevant to point-
based trackers.

As we noted in our experiments on 3D human figure tracking, the style
problem should be resolved for ultimate automatic human tracking. Tensor
decomposition has been introduced as a way to extract the motion signature
capturing the distinctive pattern of movement of any particular individual [2].
It would be a promising direction to extend this linear decomposition tech-
nique to the novel nonlinear decomposition.

The computation cost for learning MNDS model is another issue to be
consider. The fact that the cost is proportional to the number of data points
indicates that we can utilize the sparse prior of data for more efficient leaning.
We also plan to extend the NDS formalism to collections of dynamic models
using the switching dynamics approaches as a way of modelling a general and
diverse family of temporal processes.

Appendix: MAR Gradient

Log-likelihood of MAR model is, using Equation (7.4) and leaving out the
constant term,

L =
N

2
log |Kxx| +

1
2
tr
{
K−1

xx XX′} (7.11)

with Kxx = Kxx(X,X) defined in Equation (7.5). Gradient of L with respect
to X is

∂L

∂X
=

∂XΔ

∂X
∂L

∂Kxx

∂Kxx

∂XΔ
+

∂L

∂X

∣∣∣∣
XΔ

. (7.12)

XΔ can be written as a linear operator on X,

XΔ = Δ · X, Δ =
[
0(T−1)×1 I(T−1)×(T−1)

0 01×(T−1)

]
, (7.13)

where 0 and I denote zero vectors and identity matrices of sizes specified in
the subscripts. It is now easily follows that

∂L

∂X
= Δ′ (NK−1

xx − K−1
xx XX′K−1

xx

)
Δ · X + K−1

xx X. (7.14)
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Summary. Extracting meaningful 3D human motion information from video
sequences is of interest for applications like intelligent human–computer inter-
faces, biometrics, video browsing and indexing, virtual reality or video surveillance.
Analyzing videos of humans in unconstrained environments is an open and currently
active research problem, facing outstanding scientific and computational challenges.
The proportions of the human body vary largely across individuals, due to gender,
age, weight or race. Aside from this variability, any single human body has many
degrees of freedom due to articulation and the individual limbs are deformable due
to moving muscle and clothing. Finally, real-world events involve multiple interact-
ing humans occluded by each other or by other objects and the scene conditions
may also vary due to camera motion or lighting changes. All these factors make
appropriate models of human structure, motion and action difficult to construct
and difficult to estimate from images. In this chapter we give an overview of the
problem of reconstructing 3D human motion using sequences of images acquired
with a single video camera. We explain the difficulties involved, discuss ways to
address them using generative and discriminative models and speculate on open
problems and future research directions.

8.1 The Problem

The problem we address is the reconstruction of full-body 3D human motion
in monocular video sequences. This can be formulated either as an incremental
or as a batch problem. In incremental methods, images are available one at
a time and one updates estimates of the human pose after each new image
observation. This is known as filtering. Batch approaches estimate the pose
at each timestep, using a sequence of images, prior and posterior to it. This
is known as smoothing.

It is legitimate to ask why one should restrict attention to only one cam-
era, as opposed to several, in order to attack an already difficult 3D inference
problem? The answers are both practical and philosophical. On the prac-
tical side, often only a single image sequence is available, when processing
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and reconstructing movie footage, or when cheap devices are used as inter-
face tools devoted to gesture or activity recognition. A more stringent prac-
tical argument is that, even when multiple cameras are available, general
3D reconstruction is complicated by occlusion from other people or scene
objects. A robust human motion perception system has to necessarily deal
with incomplete, ambiguous and noisy measurements. Fundamentally, these
difficulties persist irrespective of how many cameras are used. From a philo-
sophical viewpoint, reconstructing 3D structure using only one eye or a pho-
tograph is something that we, as humans, can do. We do not yet know how
much is direct computation on ‘objective’ image information, and how much
is prior knowledge in such skills, or how are these combined. But it is proba-
bly their conjunction that makes biological vision systems flexible and robust,
despite being based on one eye or many. By attacking the ‘general’ problem
instead of focusing on problem simplifications, we hope to make progress to-
wards identifying components of such robust and efficient visual processing
mechanisms.

Two general classes of strategies can be used for 3D inference:(i) Generative
(top-down) methods optimize volumetric and appearance-based 3D human
models for good alignment with image features. The objective is encoded as
an observation likelihood or cost function with optima (ideally) centered at
correct pose hypotheses; (ii) Conditional (bottom-up) methods (also referred
as discriminative or recognition-based) predict human poses directly from
images, typically using training sets of (pose, image) pairs. Difficulties exist in
each case. Some of them, like data association are generic. Others are specific
to the class of techniques used: optimizing generative models is expensive and
many solutions may exist, some of which spurious, because human appearance
is difficult to model accurately and because the problem is nonlinear; discrim-
inative methods need to model complex multivalued image-to-3D (inverse)
relations.

8.2 Difficulties

Extracting monocular 3D human motion poses several difficulties that we
review. Some are inherent to the use of a single camera, others are generic
computer vision difficulties that arise in any complex image understanding
problem.
Depth 3D–2D projection ambiguities: Projecting the 3D world into im-
ages suppresses depth information. This difficulty is fundamental in computer
vision. Inferring the world from only one camera, firmly places our research
in the class of science dealing with inverse and ill-posed problems [5]. The
non-uniqueness of solution when estimating human pose in monocular images
is apparent in the ‘forward-backward ambiguities’ produced when position-
ing the human limbs, symmetrically, forwards or backwards, with respect to
the camera ‘rays of sight’ (see Figure 8.1). Reflecting the limb angles in the
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Fig. 8.1. Reflective Ambiguities (a, b, c, d, e). Original image (a). Two very different
configurations of a 3D model (b and d) have image projections that align well with
the contour of the imaged human subject (c and e).

frontoparallel plane leaves the image unchanged to first order. For generative
models, ambiguities can lead to observation likelihood functions with multiple
peaks of somewhat comparable magnitude. The distinction between a global
and a local optimum becomes narrow – in this case, we are interested in all
optima that are sufficiently good. For discriminative models, the ambiguities
lead to multivalued image–pose relations that defeat function approximations
based on neural networks or regression. The ambiguity is temporally persis-
tent both under general smooth dynamical models [48] and under dynamics
learned from typical human motions [47].
High-dimensional representation: Reconstructing 3D human motion
raises the question as of what information is to be recovered and how to
represent it. A priori, a model where the 3D human is discretized as densely
as possible, with a set of 3D point coordinates, with independent structure
and motion is as natural as any other, and could be the most realistic one.
Nevertheless, in practice, this would be difficult to constrain since it has ex-
cess degrees of freedom for which the bare monocular images cannot account.
Representing the human as a blob with centroid coordinates is the opposite
extreme, that can be efficient and simpler to estimate at the price of not being
particularly informative for 3D reasoning.1 Consequently, a middle-ground
has to be found. At present, this selection is based mostly on intuition and on
facts from human structural anatomy. For 3D human tracking the preferred
choice remains a kinematic representation with a skeletal structure covered
with ‘flesh’ of more or less complex type (cones, cylinders, globally deformable
surfaces). For motion estimation, the model can have, depending on the level
of detail, in the order of 30–60 joint angle variables – enough to reproduce
a reasonable class of human motions with accuracy. However, estimation
in high-dimensional spaces is computationally expensive, and exhaustive or
random search is practically infeasible. Existing algorithms rely on approx-
imations or problem-dependent heuristics: temporal coherency, dynamical

1 Apart from tractability constraints, the choice of a representation is also applica-
tion dependent. For many applications, a hierarchy of models with different levels
of complexity, depending on context, may be the most appropriate.
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models, and symmetries (e.g., hypotheses generated using forward–backward
flips of limbs, from a given configuration). From a statistical perspective,
more rigorous is to follow a learned data-driven approach, i.e., a minimal
representation with intrinsic dimension based on its capacity to synthesize
the variability of human shapes and poses present in the tracking domain.
Sections §8.4.3 and §8.5.1 discuss techniques for learning low-dimensional
models and for estimating their intrinsic dimensionality.
Appearance modelling, clothing: Not operating with a anatomically ac-
curate human body models is in most applications offset by outer clothing
that deforms. This exhibits strong variability in shape and appearance, both
being difficult to model.
Physical constraints: Physically inspired models based on kinematic and
volumetric parameterizations can be used to reason about the physical con-
straints of real human bodies. For consistency, the body parts have to not
penetrate eachother and the joint angles should only have limited intervals of
variation (see Figure 8.2). For estimation, the presence of constraints is both
good and bad news. The good news is that the admissible state space volume is
smaller than initially designed, because certain regions are not reachable, and
many physically unrealistic solutions may be pruned. The bad news is that
handling the constraints automatically is nontrivial, especially for continuous
optimization methods used in generative models.
Self-occlusion: Given the highly flexible structure of an articulated human
body, self-occlusion between different body parts occurs frequently in monoc-
ular views and has to be accounted for. Self-occlusion is an observation

Fig. 8.2. (Left) Physical constraint violations when joint angle limits or body part
non-penetration constraints are not enforced. (Right) Illustrative example of ambigu-
ities during dynamic inference, for a model with 1D state x and observation r. The
S-like distribution implies that multiple state hypotheses (shown in dashed) may
exists for certain observations. The ambiguity persists for observations sequences
commonly falling under each individual ‘S-branch’ (up, middle, bottom), see also
Figure 8.6. The close loops created by the splitting-merging of trajectories a, b, and
c abstract real imaging situations, as in Figure 8.1, see also [48]. Due to their loopy
nature, these ambiguities cannot be resolved even when considering long observation
timescales.



8 3D Human Motion Analysis in Video 189

ambiguity (see section below). Several aspects are important. First is occlusion
detection or prediction, so as to avoid the misattribution of image measure-
ments to occluded model regions that have not generated any contribution to
image appearance. The second aspect is the management of uncertainty in the
position of the body parts that are not visible. Improperly handled this can
produce singularities. It is appropriate to use prior-knowledge acquired during
learning in order to constrain the uncertainty of unobserved body parts, based
on the state of visible ones. Missing data is filled-in using learned correlations
typically observed in natural human motions.

For generative models, occlusion raises the additional problem of con-
structing of an observation likelihood that realistically reflects the probabil-
ity of different configurations under partial occlusion and viewpoint change.
Independence assumptions are often used to fuse likelihoods from different
measurements, but this conflicts with occlusion, which is a relatively coher-
ent phenomenon. For realistic likelihoods, the probabilities of both occlusion
and measurement have to be incorporated, but this makes the computations
intractable.
General unconstrained motions: Humans move in diverse, but also highly
structured ways. Certain motions have a repetitive structure like running or
walking, others represent ‘cognitive routines’ of various levels of complexity,
e.g., gestures during a discussion, or crossing the street by checking for cars
to the left and to the right, or entering one’s office in the morning, sitting
down and checking e-mail. It is reasonable to think that if such routines could
be identified in the image, they would provide strong constraints for tracking
and reconstruction with image measurements serving merely to adjust and fine
tune the estimate. However, human activities are not simply preprogrammed –
they are parameterized by many cognitive and external unexpected variables
(goals, locations of objects or obstacles) that are difficult to recover from
images and several activities or motions are often combined.
Kinematic singularities: These arise when the kinematic Jacobian looses
rank and the associated numerical instability can lead to tracking failure. An
example is the nonlinear rotation representation used for kinematic chains,
for which no singularity-free minimal representation exists.2

Observation ambiguities: Ambiguities arise when a subset of the model
state cannot be directly inferred from image observations. They include but
are by no means limited to kinematic ambiguities. Observability depends on
the design of the observation model and image features used. (Prior knowledge
becomes important and the solutions discussed for self-occlusion are applica-
ble.) For instance when an imaged limb is straight and an edge-based obser-
vation likelihood is used with a symmetric body part model, rotations around
the limb’s own axis cannot be observed – the occluding contour changes little
when the limb rotates around its own axis. Only when the elbow moves the

2 Nonsingular overparameterizations exist, but they are not unique.
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uncertain axial parameter values can be constrained. This may not be am-
biguous under an intensity-based model, where the texture flow can make the
rotation observable.
Data association ambiguities: Identifying which image features belong to
the person and which to the background is a general vision difficulty known
as data association. For our problem this is amplified by distracting clutter
elements that resemble human body parts, e.g., various types of edges, ridges
or pillars, trees, bookshelves, encountered in man-made and natural environ-
ments.
Lighting and motion blur: Lighting changes form another source of vari-
ability whenever image features based on edge or intensity are used. Artificial
edges are created by cast shadows and inter-frame lighting variations could
lead to complicated, difficult to model changes in image texture. For systems
with a long shutter time, or during rapid motion, image objects appear blurred
or blended with the background at motion boundaries. This has impact on
the quality of both static feature extraction methods, and of frame to frame
algorithms, such as the ones that compute the optical flow.

8.3 Approaches: Generative and Conditional Models

Approaches to tracking and modelling can be broadly classified as generative
and discriminative. They are similar in that both require a state represen-
tation x, here a 3D human model with kinematics (joint angles) or shape
(surfaces or joint positions), and both use a set of image features as observa-
tions r for state inference. Often, a training set, T = {(ri,xi) | i = 1 . . . N}
sampled from the joint distribution is available. (For unsupervised problems,
samples from only the state or only the observation distribution may be avail-
able to use.) The computational goal for both approaches is common: the
conditional distribution, or a point estimate, for the model state, given obser-
vations.3 Clearly, an important design choice is the state representation and
the observation descriptor. The state should have representation and dimen-
sionality well calibrated to the variability of the task, whereas the observation
descriptor is subject to selectivity–invariance trade-offs: it needs to capture
not only discriminative, subtle image detail, but also the strong, stable de-
pendencies necessary for learning and generalization. Currently, these are by
and large, obtained by combining a priori design and off-line unsupervised
learning. But once decided upon, the representation (model state + observa-
tion descriptor) is no longer free, but known and fixed for subsequent learning

3 This classification and statement of purpose is quite general. Methods may deviate
from it in a way or another and shortcuts may be taken. But this should not
undermine the usefulness of a framework for formal reasoning where to state the
assumptions made and the models used, as well as the circumstances when these
are expected to perform optimally (see Figure 8.3).
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and inference stages. This holds notwithstanding of the method type, be it
generative or discriminative.

Generative algorithms typically model the joint distribution using a
constructive form of the observer – the observation likelihood, with maxima
ideally centered at correct pose hypotheses. Inference involves complex state
space search in order to locate the likelihood peaks, using either non-linear
optimization or sampling. Bayes’ rule is then used to compute the state con-
ditional from the observation model and the state prior. Learning can be
both supervised and unsupervised. This includes state priors [8, 13, 21, 44],
low-dimensional models [47,64] or learning the parameters of the observation
model, e.g., texture, ridge or edge distributions, using problem-dependent,
natural image statistics [38,42]. Temporal inference is framed in a clear prob-
abilistic and computational framework based on mixture filters or particle
filters [12,13,23,44,56,57,59].

It has been argued that generative models can flexibly reconstruct com-
plex unknown motions and can naturally handle problem constraints. It has
been counter-argued that both flexibility and modelling difficulties lead to
expensive, uncertainn = inference [13, 43, 48, 57], and a constructive form of
the observer is both difficult to build and somewhat indirect with respect to
the task, which requires conditional state estimation and not conditional ob-
servation modelling. These arguments motivate the complementary study of
discriminative algorithms [2,18,34,37,41,63] which model and predict the
state conditional directly in order to simplify inference. Prediction however
involves missing (state) data, unlike learning which is supervised. But learning
is also difficult because modelling perceptual data requires adequate represen-
tations of highly multimodal distributions. The presence of multiple solutions
in the image-to-pose mapping implies that, strictly, this is multivalued and
cannot be functionally or globally approximated. However, several authors
made initial progress using single hypothesis schemes [2, 18, 34, 41, 63]. E.g.,
nearest-neighbor [34, 41, 63] and regression [2, 18] have been used with good
results. Others used mixture models [2,37] to cluster the joint distribution of
(observation, state) pairs and fitted function approximators (neural network
or regressor) to each partition. In §8.5, we will review our BM3E, a formal
probabilistic model based on mixture of experts and conditional temporal
chains [49,51,52].
Notation: We discuss generative and conditional models based on the graphi-
cal dependency in Figure 8.3. These have continuous temporal states xt, obser-
vations rt, observation model p(rt|xt), and dynamics p(xt|xt−1), t = 1 . . . T
(for generative models). For conditional models, we model the conditional
state distribution p(xt|rt) and a previous state/current observation-based den-
sity p(xt|xt−1, rt). Xt = (x1,x2, . . . ,xt) is the model joint state estimated
based on a time series of observations Rt = (r1, . . . , rt).
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Fig. 8.3. A conditional/discriminative temporal chain model (a, left) reverses the
direction of the arrows that link the state and the observation, compared with a gen-
erative one (b, right). The state conditionals p(xt|rt) or p(xt|xt−1, rt) can be learned
using training pairs and directly predicted during inference. Instead, a generative
approach (b) will model and estimate p(rt|xt) and do a more complex probabilistic
inversion to compute p(xt|rt) via Bayes’ rule. Shaded nodes reflect variables that
are not modeled but conditioned upon.

8.4 Generative Methods

Consider a nonlinear generative model pθ(x, r) with d = dim(x), and para-
meters θ. Without loss of generality, assume a robust observation model:

pθ(r|x) = (1 − w) · N (r;G(x), Σθ) + oθ · w (8.1)

This corresponds to a mixture of a Gaussian having mean G(x) and covariance
Σθ, and a uniform background of outliers oθ with proportions given by w. The
outlier process is truncated at large values, so the mixture is normalizable.

In our case, the state space x represents human joint angles, the parame-
ters θ may include the Gaussian observation noise covariance, the weighting
of outliers, the human body proportions, etc. Gθ(x) is a nonlinear transforma-
tion that predicts human contours, internal edges and possibly appearance (it
includes nonlinear kinematics, occlusion analysis and perspective projection),
according to consistent kinematic constraints. Alternatively, we also use an
equivalent energy-based model – the maxima in probability or the minima in
energy have similar meaning and are used interchangeably:

pθ(x, r) = pθ(r|x)p(x) =
1

Zθ(x, r)
exp(−Eθ(x, r)) (8.2)

Eθ(x, r) = − log[(1 − w)N (r;G(x), Σθ) + oθw] + Eθ(x) − logZθ(x, r) (8.3)

with prior Eθ(x) and normalization constant Zθ(x, r) =
∫
(x,r)

exp(−Eθ(x, r)).
Notice that Zθ(x) =

∫
r
exp(−Eθ(x, r)) can be easily computed by sampling

from the mixture of Gaussian and uniform outlier distribution, but computing
Zθ(x, r) and Zθ(r) =

∫
x

exp(−Eθ(x, r) is intractable because the averages are
taken w.r.tlet@tokeneonedotthe unknown state distribution.4

4 The choice of predicted and measured image features, hence the exact specifica-
tion of the observation model, albeit very important, will not be further discussed.
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8.4.1 Density Propagation Using Generative Models

For filtering, we compute the optimal state distribution p(xt|Rt), conditioned
by observations Rt up to time t. The recursion can be derived as [20, 22, 24,
25,46] (Figure 8.3b):

p(xt|Rt) =
1

p(rt|Rt−1)
p(rt|xt)

∫
p(xt|xt−1) p(xt−1|Rt−1)dxt−1 (8.4)

The joint distribution factorizes as:

p(XT ,RT ) = p(x1)
T∏

t=2

p(xt|xt−1)
T∏

t=1

p(rt|xt) (8.5)

8.4.2 Optimization and Temporal Inference Algorithms

Several general-purpose sampling and optimization algorithms have been
proposed in order to efficiently search the high-dimensional human pose
space. In a temporal framework the methods keep a running estimate of the
posterior distribution over state variable (either sample-based or mixture-
based) and update it based on new observations. This works time-recursively,
the starting point(s) for the current search being obtained from the results
at the previous time step, perhaps according to some noisy dynamical model.
To the (often limited) extent that the dynamics and the image matching
cost are statistically realistic, Bayes-law propagation of a probability density
for the true state is possible. For linearized unimodal dynamics and obser-
vation models under least squares/Gaussian noise, this leads to Extended
Kalman Filtering. For likelihood-weighted random sampling under general
multimodal dynamics and observation models, bootstrap filters [20] or Con-
densation [23] result. In either case various model parameters must be tuned
and it sometimes happens that physically implausible settings are needed for
acceptable performance. In particular, to control mistracking caused by cor-
respondence errors, selection of slightly incorrect inverse kinematics solutions,
and similar model identification errors, visual trackers often require exagger-
ated levels of dynamical noise. The problem is that even quite minor errors
can pull the state estimate a substantial distance from its true value, espe-
cially if they persist over several time steps. Recovering from such an error
requires a state space jump greater than any that a realistic random dynamics
is likely to provide, whereas using an exaggeratedly noisy dynamics provides
an easily controllable degree of local randomization that often allows the mis-
tracked estimate to jump back onto the right track. Boosting the dynamical
noise does have the side effect of reducing the information propagated from
past observations, and hence, increasing the local uncertainty associated with
each mode. But this is a small penalty to pay for reliable tracking lock, and
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in any case the loss of accuracy is often minor in visual tracking, where weak
dynamical models (i.e., short integration times: most of the state informa-
tion comes from current observations and dynamical details are unimportant)
are common. The critical component in most nowday trackers remains the
method that searches the observation likelihood at a given timestep based on
initializations from the previous one.
General search algorithms: Importance sampling [43] and annealing
[13, 35] have been used to construct layered particle filters which sample
with increased sensitivity to the underlying observation likelihood in order to
better focus samples in probable regions. Methods based on Hybrid Monte
Carlo [12, 17, 55] use the gradient of the sampling distribution in order to
generate proposals that are accepted more frequently during a Markov Chain
Monte Carlo simulation. Hyperdynamic Sampling [55] modifies the sampling
distribution based on its local gradient and curvature in order to avoid unde-
sirable trapping in local optima. This creates bumps in the regions of negative
curvature in the core of the maxima. Samples are specifically repelled towards
saddle-points, so to make inter-maxima transitions occur more frequently.
Hyperdynamic Sampling is complementary and can be used in conjunction
with both Hybrid-Monte Carlo and/or annealing. Non-parametric belief prop-
agation [44, 59] progressively computes partial sample-based state estimates
at each level of a temporal (or spatial, e.g., body-like structured) graphical
model. It uses belief propagation and fits compact mixture approximations
to the sample-estimated conditional posteriors at each level along the way.

Eigenvector Tracking and Hypersurface Sweeping [54] are saddle-point
search algorithms. They can start at any given local minimum and climb
uphill to locate a first-order saddle point – a stable point with only one neg-
ative curvature, hence a local maximum in one state space dimension and a
local minimum in all the other dimensions. From the saddle it is easy to slide
downhill to a nearby optimum using gradient descent and recursively resume
the search. For high-dimensional problems many saddle points with different
patterns of curvature exist, but the first-order ones are potentially the most
useful. They are more likely to lead to low-cost nearby local minima because,
from any given one, only one dimension is climbed uphill.
Problem specific algorithms: Covariance Scaled Sampling (CSS) [56] is a
probabilistic method which represents the posterior distribution of hypotheses
in state space as a mixture of long-tailed Gaussian-like distributions whose
weights, centers and scale matrices (‘covariances’) are obtained as follows.
Random samples are generated, and each is optimized (by nonlinear local
optimization, respecting any joint constraints, etc.) to maximize the local
posterior likelihood encoded by an image- and prior-knowledge-based cost
function. The optimized likelihood value and position give the weight and
center of a new component, and the inverse Hessian of the log-likelihood gives
a scale matrix that is well adapted to the contours of the cost function, even for
very ill-conditioned problems like monocular human tracking. However, when
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sampling, particles are deliberately scattered more widely than a Gaussian of
this scale matrix (covariance) would predict, in order to probe more deeply
for alternative minima.

Kinematic Jump Sampling (KJS) [57] is a domain-specific sampler, where
each configuration of the skeletal kinematic tree has an associated interpreta-
tion tree – the tree of all fully or partially assigned 3D skeletal configurations
that can be obtained from the given one by forwards/backwards flips. The tree
contains only, and generically all, configurations that are image-consistent in
the sense that their joint centers have the same image projections as the given
one. (Some of these may still be inconsistent with other constraints: joint lim-
its, body self-intersection or occlusion). The interpretation tree is constructed
by traversing the kinematic tree from the root to the leaves. For each link,
we construct the 3D sphere centered on the currently hypothesized position
of the link’s root, with radius equal to link length. This sphere is pierced
by the camera ray of sight through the observed image position of the link’s
endpoint to give (in general) two possible 3D positions of the endpoint that
are consistent with the image observation and the hypothesized parent posi-
tion (see Figure 8.1). Joint angles are then recovered for each position using
simple closed-form inverse kinematics. KJS can be used in conjunction with
CSS in order to handle data association ambiguities. Both CSS and KJS can
be used in conjunction with non-linear mixture smoothers [48] in order to
optimally estimate multiple human joint angle trajectory hypotheses based on
video sequences.

8.4.3 Learning

We review unsupervised and supervised methods for learning generative hu-
man models. These are applicable to obtain both model representations (state
and observation) and parameters.

Learning Representations

Unsupervised methods have recently been used to learn state representa-
tions that are lower-dimensional, hence, better adapted for encoding the
class of human motions in a particular domain, e.g., walking, running, con-
versations or jumps [31, 47, 64]. We discuss methods trained on sequences
of high-dimensional joint angles obtained from human motion capture, but
other representations, e.g., joint positions can be used. The goal is to reduce
standard computations like visual tracking in the human joint angle state
space – referred here as ambient space, to better constrained low-dimensional
spaces referred as perceptual (or latent). Learning couples otherwise indepen-
dent variables, so changes in any of the perceptual coordinates change all the
ambient high-dimensional variables (Figure 8.4). The advantage of perceptual
representations is that image measurements collected at any of the human
body parts constrain all the body parts. This is useful for inference during
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partial visibility or self-occlusion. A disadvantage of perceptual representa-
tions is the loss of physical interpretation – joint angle limit constraints are
simple to express and easy to enforce as per variable, localized inequalities in
ambient space, but hard to separate in a perceptual space, where they involve
(potentially complex) relations among all variables. The following aspects are
important when designing latent variable models:

1. Global perceptual coordinate system: To make optimization efficient in
a global coordinate system is necessary. This can be obtained with any of
several dimensionality reduction methods including Laplacian Eigenmaps,
ISOMAP, LLE, etc. [4, 14, 39, 61]. The methods represent the training set as
a graph with local connections based on Euclidean distances between high-
dimensional points. Local embeddings aim to preserve the local geometry of
the dataset whereas ISOMAP conserves the global geometry (the geodesics
on the manifold approximated as shortest paths in the graph). Learning the
perceptual representation involves embedding the graph with minimal distor-
tion. Alternatively the perceptual space can be represented with a mixture
of low-dimensional local models with separate coordinate systems. In this
case, one either has to manage the transition between coordinate systems by
stitching their boundaries, or to align, post hoc, the local models in a global
coordinate system. The procedure is more complex and the coordinates not
used to estimate the alignment, or out of sample coordinates, may still not be
unique. This makes global optimization based on gradient methods nontrivial.

2. Preservation of intrinsic curvature: The ambient space may be intrin-
sically curved due to the physical constraints of the human body or occlu-
sion [15]. To preserve the structure of the ambient space when embedding,
one needs to use methods that preserve the local geometry. e.g., Laplacian
eigenmaps, LLE or Hessian embeddings [4, 14, 39]. ISOMAP would not be
adequate, because geodesics running around a curved, inadmissible ambient
region, will be mapped, at curvature loss, to straight lines in perceptual space.

3. Intrinsic dimensionality: It is important to select the optimal number of
dimensions of a perceptual model. Too few will lead to biased, restricted mod-
els that cannot capture the variability of the problem. Too many dimensions
will lead to high variance estimates during inference. A useful sample-based
method to estimate the intrinsic dimensionality is based on the Hausdorff
dimension, and measures the rate of growth in the number of neighbors
of a point as the size of its neighborhood increases. At the well-calibrated
dimensionality, the increase should be exponential in the intrinsic dimension.
This is illustrated in Fig. 8.4, which shows analysis of walking data obtained
using human motion capture. Figure 8.4(a) shows Hausdorff estimates for
the intrinsic dimensionality: d = limr→0

log N(r)
log(1/r) , where r is the radius of a

sphere centered at each point, and N(r) are the number of points in that
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Fig. 8.4. Analysis of walking data. (a) Estimates of intrinsic dimensionality based
on the Hausdorff dimension. (b) Geometric distortion vs. neighborhood size for a
Laplacian embedding method. (c) Embedding of a walking data set of 2500 samples
in 2d. Also shown, the Gaussian mixture prior (3 stdev), modelling the data density
in perceptual space.

neighborhood (the plot is averaged over many nearby points). The slope
of the curve in the linear domain 0.01 − 1 corresponds roughly to a 1D
hypothesis. Figure 8.4(b) plots the embedding distortion, computed as the
normalized Euclidean SSE over each neighborhood in the training set. Here,
5–6 dimensions appear sufficient for a model with low-distortion.

4. Continuous generative model: Continuous optimization in a low-
dimensional, perceptual space based on image observations requires not
only a global coordinate system but also a global continuous mapping be-
tween the perceptual and observation spaces. Assuming the high-dimensional
ambient model is continuous, the one obtained by reducing its dimensional-
ity should also be. For example, a smooth mapping between the perceptual
and the ambient space can be estimated using function approximation (e.g.,
kernel regression, neural networks) based on high-dimensional points in both
spaces (training pairs are available once the embedding is computed). A per-
ceptual continuous generative model enables the use of continuous methods
for high-dimensional optimization [12, 56–58]. Working in perceptual spaces
indeed targets dimensionality reduction but for many complex processes, even
reduced representations would still have large dimensionality (e.g., 10D–15D)
– efficient optimizers are still necessary.

5. Consistent estimates impose not only a prior on probable regions in
perceptual space, as measured by the typical training data distribution, but
also the separation of holes produced by insufficient sampling from genuine
intrinsic curvature, e.g., due to physical constraints. The inherent sparsity of
high-dimensional training sets makes the disambiguation difficult, but analytic
expressions can be derived using a prior transfer approach. Ambient constrains
can be related to perceptual ones, under a change of variables. If physical
constraints are given as priors in ambient space pa(xa) and there exist a
continuous perceptual-to-ambient mapping xa = F(x),∀x, with Jacobian JF,
an equivalent prior in latent space is:



198 C. Sminchisescu

p(x) ∝ pa(F(x))
√

|JFJ�
F | (8.6)

Low-dimensional generative models based on principles (1)–(5) (or a subset
of them) have been convincingly demonstrated for 3D human pose estimation
[31,47,64].

Learning Parameters

Generative models are based on normalized probabilities parameterized by θ,
that may encode the proportions of the human body, noise variances, feature
weighting in the observation model, or the parameters of the dynamical model.
For inference, the normalization is not important. For learning, the normalizer
is essential in order to ensure that inferred model state distributions peak in
the correct regions when presented with typical image data. Here, we only re-
view learning methods for a static generative model pθ(x, r), learning in video
will instead use the joint distribution at multiple timesteps pθ(XT ,RT ). It is
convenient to work with probabilistic quantities given as Boltzmann distribu-
tions, with uniform state priors, c.f. (8.2). Assuming a supervised training set
of state-observation pairs, {xi, ri}i=1...N , one can use Maximum Likelihood
to optimize the model parameters using a free energy cost function:

F = − 1
N

N∑
n=1

log pθ(xn, rn) = 〈Eθ(x, r)〉data + logZθ(x, r) (8.7)

To minimize the free energy we need to compute its gradients:

dF
dθ

=
〈
dEθ(x, r)

dθ

〉
data

−
〈
dEθ(x, r)

dθ

〉
model

(8.8)

where the second term is equal to the negative derivative of the log-partition
function w.r.tlet@tokeneonedotθ. Note that the only difference between the
two terms in (8.8) is the distribution used to average the energy derivative. In
the first term we use the empirical distribution, i.e., we simply average over the
available data-set. In the second term however we average over the model dis-
tribution as defined by the current setting of the parameters. Computing the
second average analytically is typically too complicated, and approximations
are needed.5 An unbiased estimate can be obtained by replacing the integral
by a sample average, where the sample is to be drawn from the model pθ(x, r).
Any of the approximate optimization or inference methods described in §8.4.2
can be used. The goal of learning is to update the model parameters in order
to make the training data likely. Normalizing using the partition function Zθ

ensures discrimination: making the true solution likely automatically makes
5 The problem is simpler if the prior energy Eθ(x) is fixed and not learned and only

the ‘easier’ partition function Zθ(x) needs to be computed. The problem remains
hard (Zθ(r)) for a hybrid conditional model expressed using generative energies.
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Fig. 8.5. We show the trajectory probability through each optimum of the observa-
tion model at each timestep in a video sequence before (left) and after ML learning
(right). The video films a person walking towards a camera and doing a bow [48]. The
time is unfolded on the x-axis and we switch sign in between successive timesteps
for visualization (the values are all normally positive). Before learning, the temporal
trajectory distribution collapses to fewer components in regions where the uncer-
tainty of the model-image matching cost diminishes, but is multimodal and has high
entropy. The distribution has lower entropy after learning, showing the usefulness of
this procedure. The ambiguity diminishes significantly, but does not disappear. The
entropy of the state posterior after learning reflects some of the limits of modelling
and gives intuition about run-time speed and accuracy.

the incorrect competing solutions unlikely. ML learning iteratively reshapes
the model state probability distribution to (at least!) infer the correct result
on the training set. Results obtained using this learning method to estimate
the parameters of a generative model (noise variances, weighting of the im-
age features and the variance of a Gaussian dynamical model) are shown in
Figure 8.5. This corresponds to the video sequence in [48], which films a person
walking towards the camera and doing a bow.

8.5 Conditional and Discriminative Models

In this section we describe BM3E, a Conditional Bayesian M ixture of
Experts M arkov M odel for probabilistic estimates in discriminative visual
tracking. The framework applies to temporal, uncertain inference for continu-
ous state-space models, and represents the bottom-up counterpart of pervasive
top-down generative models estimated with Kalman filtering or particle filter-
ing (§8.4).6 But instead of inverting a generative observation model at run-
time, we learn to cooperatively predict complex state distributions directly
from descriptors encoding image observations. These are integrated in a con-
ditional graphical model in order to enforce temporal smoothness constraints

6 Unlike most generative models, systems based on BM3E can automatically ini-
tialize and recover from failure – an important feature for reliable 3D human pose
tracking.
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and allow a principled management of uncertainty. The algorithms combine
sparsity, mixture modelling, and nonlinear dimensionality reduction for effi-
cient computation in high-dimensional continuous state spaces. We introduce
two key technical aspects: (1) The density propagation rules for discrimina-
tive inference in continuous, temporal chain models; (2) Flexible algorithms
for learning feedforward, multimodal state distributions based on compact,
conditional Bayesian mixture of experts models.

8.5.1 The BM3E Model

Discriminative Density Propagation

We work with a conditional model having chain structure, as in Figure 8.3a.
The filtered density can be derived using the conditional independence as-
sumptions in the graphical model in Figure 8.3a [33,51,52]:

p(xt|Rt) =
∫

p(xt|xt−1, rt)p(xt−1|Rt−1)dxt−1 (8.9)

The conditional joint distribution for T timesteps is:

p(XT |RT ) = p(x1|r1)
T∏

t=2

p(xt|xt−1, rt) (8.10)

In fact, (8.9) and (8.10) can be derived even more generally, based on a
predictive conditional that depends on a larger window of observations up
to time t [49], but the advantage of these models has to be contrasted to:
(i) Increased amount of data required for training due to higher dimensional-
ity. (ii) Increased difficulty to generalize due to sensitivity to timescale and/or
alignment with a long sequence of past observations.

In practice, one can model p(xt|xt−1, rt) as a conditional Bayesian mix-
ture of M experts (c.f let@tokeneonedot §8.5.1). The prior p(xt−1|Rt−1) is
also represented as a Gaussian mixture with M components. To compute the
filtered posterior, one needs to integrate M2 pairwise products of Gaussians
analytically, and use mixture of Gaussian simplification and pruning methods
to prevent the posterior from growing exponentially [46,48].

A discriminative corrective conditional p(xt|xt−1, rt) can be more sen-
sitive to incorrect previous state estimates than ‘memoryless’ distributions
like p(xt|rt). However we assume, as in any probabilistic approach, that the
training and testing data are representative samples from the true underly-
ing distributions in the domain. In practice, for improved robustness it is
straightforward to include an importance sampler based on p(xt|rt) to Equa-
tion. (8.9) – as necessary for initialization or for recovery from transient fail-
ure. Equivalently, a model based on a mixture of memoryless and dynamic
distributions can be used.
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Conditional Bayesian Mixture of Experts Model

This section describes the methodology for learning multimodal conditional
distributions for discriminative tracking (p(xt|rt) and p(xt|xt−1, rt) in §8.5.1).
Many perception problems like 3D reconstruction require the computation of
inverse, intrinsically multivalued mappings. The configurations corresponding
to different static or dynamic estimation ambiguities are peaks in the (multi-
modal) conditional state distribution (Figure 8.6). To represent them, we use
several ‘experts’ that are simple function approximators. The experts trans-
form their inputs7 to output predictions, combined in a probabilistic mixture
model based on Gaussians centered at their mean value. The model is con-
sistent across experts and inputs, i.e., the mixing proportions of the experts
reflect the distribution of the outputs in the training set and they sum to 1
for every input. Some inputs are predicted competitively by multiple experts
and have multimodal state conditionals. Other ‘unambiguous’ inputs are pre-
dicted by a single expert, with the others effectively switched-off, having neg-
ligible probability (see Figure 8.6). This is the rationale behind a conditional
Bayesian mixture of experts, and provides a powerful mechanism for contex-
tually modelling complex multimodal distributions. Formally this is described
by:

Qν(x|r) = p(x|r,W,Ω,λ) =
M∑
i=1

g(r|λi)p(x|r,Wi,Ω−1
i ) (8.11)
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Fig. 8.6. An illustrative dataset [6] consists of about 250 values of x generated
uniformly in (0, 1) and evaluated as r = x+0.3 sin(2πx)+ε, with ε drawn from a zero
mean Gaussian with standard deviation 0.05. Notice that p(x|r) is multimodal. (a)
Left shows the data colored by the posterior membership probability h (assignment
of points to experts) of three expert kernel regressors. (b) Middle shows the gates
g (8.12), as a function of the input, but also the three uniform probabilities (of
the joint distribution) that are computed by a clusterwise regressor [37]. (c) Right
shows how a single kernel regressor cannot represent a multivalued dependency (it
may either average the different values or commit to an arbitrary one, depending
on the kernel parameters).

7 The ‘inputs’ can be either observations rt, when modelling p(xt|rt) or observation-
state pairs (xt−1, rt) for p(xt|xt−1, rt). The ‘output’ is the state throughout.
Notice that temporal information is used to learn p(xt|xt−1, rt).
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where:

g(r|λi) =
f(r|λi)∑M

k=1 f(r|λk)
(8.12)

p(x|r,Wi,Ωi) = N (x|WiΦ(r),Ω−1
i ) (8.13)

Here r are input or predictor variables, x are outputs or responses, g are
input dependent positive gates, computed in terms of functions f(r|λi), pa-
rameterized by λi. f needs to produce gates g within [0, 1], the exponential
and the softmax functions being natural choices: fi(r|λi) = exp (λ�

i r). Notice
how g are normalized to sum to 1 for consistency, by construction, for any
given input r. We choose p as Gaussians (8.13) with covariances Ω−1

i , centered
at different expert predictions, here kernel (Φ) regressors with weights Wi.
Both the experts and the gates are learned using sparse Bayesian methods,
which provide an automatic relevance determination mechanism [32, 62] to
avoid overfitting and encourage compact models with fewer nonzero weights
for efficient prediction. The parameters of the model, including experts and
gates are collectively stored in ν = {(Wi,αi,Ωi,λi,βi) | i = 1 . . .M}.

Learning the conditional mixture of experts involves two layers of opti-
mization. As in many prediction problems, one optimizes the parameters ν
to maximize the log-likelihood of a data set, T = {(ri,xi) | i = 1 . . . N}, i.e.,
the accuracy of predicting x given r, averaged over the data distribution. For
learning, we use a double-loop EM algorithm. This proceeds as follows. In the
E-step we estimate the posterior over assignments of training points to experts
(there is one hidden variable h for each expert-training pair). This gives the
probability that the expert i has generated the data n, and requires knowl-
edge of both inputs and outputs. In the M-step, two optimization problems
are solved: one for each expert and one for its gate. The first learns the expert
parameters (Wi,Ωi), based on training data T , weighted according to the
current h estimates (the covariances Ωi are estimated from expert prediction
errors [66]). The second optimization teaches the gates g how to predict h.8

The solutions are based on ML-II, with greedy (expert weight) subset selec-
tion. This strategy aggressively sparsifies the experts by eliminating inputs
with small weights after each iteration [62, 68]. The approximation can can
be interpreted as a limiting series of variational approximations (Gaussians
with decreasing variances), via dual forms in weight space [68]. Inference
(state prediction) is straightforward using (8.11). The result is a conditional
mixture distribution with components and mixing probabilities that are input-
dependent. In Figure 8.6 we explain the model using an illustrative toy exam-
ple, and show the relation with clusterwise and (single-valued) regression.

8 Prediction based on the input only is essential for output prediction (state infer-
ence), where membership probabilities h cannot be computed because the output
is missing.
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Fig. 8.7. A learned conditional Bayesian mixture of low-dimensional kernel-
induced experts predictor to compute p(x|r) ≡ p(xt|rt), ∀t. (One can similarly learn
p(xt|xt−1, rt), with input (x, r) instead of r – here we illustrate only p(x|r) for clar-
ity.) The input r and the output x are decorrelated using Kernel PCA to obtain
z and y respectively. The kernels used for the input and output are Φr and Φx,
with induced feature spaces Fr and Fx, respectively. Their principal subspaces ob-
tained by kernel PCA are denoted by P(Fr) and P(Fx), respectively. A conditional
Bayesian mixture of experts p(y|z) is learned using the low-dimensional represen-
tation (z,y). Using learned local conditionals of the form p(yt|zt) or p(yt|yt−1, zt),
temporal inference can be efficiently performed in a low-dimensional kernel induced
state space (see (8.9) where y ← x and z ← r). For visualization and error mea-
surement, the filtered density p(yt|Zt) can be mapped back to p(xt|Rt) using a
pre-image calculation.

Learning Conditional Bayesian Mixtures over Kernel Induced
State Spaces

For many human visual tracking tasks, low-dimensional models are appropri-
ate, because the components of the human state and of the image observation
vector exhibit strong correlations, hence, low intrinsic dimensionality. In or-
der to efficiently model conditional mappings between high-dimensional spaces
with strongly correlated dimensions, we rely on kernel nonlinear dimension-
ality reduction and conditional mixture prediction, as introduced in §8.5.1.
One can use nonlinear methods like kernel PCA [40, 67] and account for the
structure of the problem, where both the inputs and the outputs are likely to
be low-dimensional and their mapping multivalued (Figure 8.7). Since tempo-
ral inference is performed in the low-dimensional kernel induced state space,
backtracking to high-dimensions is only necessary for visualization or error
reporting.

8.6 Learning Joint Generative-Recognition Models

In the previous sections we have reviewed both generative (top-down) and
conditional (bottom-up, recognition) models. Despite being a natural way to
model the appearance of complex articulated structures, the success of gen-
erative models (§8.4)) has been partly shadowed because it is computational
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demanding to infer the distribution on their hidden states (human joint an-
gles) and because their parameters are unknown and variable across many real
scenes. In turn, conditional models are simple to understand and fast, but of-
ten need a generative model for training and could be blind-sighted by the
lack of feedback for self-assessing accuracy. In summary, what appears to be
necessary is a mechanism to consistently integrate top-down and bottom-up
processing: the flexibility of 3D generative modelling (represent a large set of
possible poses of human body parts, their correct occlusion and foreshortening
relationships and their consistency with the image evidence) with the speed
and simplicity of feed-forward processing. In this section we sketch one possi-
ble way to meet these requirements based on a bidirectional model with both
recognition and generative sub-components – see [53] for details. Learning the
parameters alternates self-training stages in order to maximize the probability
of the observed evidence (images of humans). During one step, the recognition
model is trained to invert the generative model using samples drawn from it.
In the next step, the generative model is trained to have a state distribution
close to the one predicted by the recognition model. At local equilibrium,
which is guaranteed, the two models have consistent, registered parameteri-
zations. During online inference, the estimates can be driven mostly by the
fast recognition model, but may include generative (consistency) feedback.

The goal of both learning and inference is to maximize the probability of
the evidence (observation) under the data generation model:

log pθ(r) = log
∫
x

pθ(x, r) = log
∫
x

Qν(x|r) pθ(x, r)
Qν(x|r) (8.14)

≥
∫
x

Qν(x|r) log
pθ(x, r)
Qν(x|r) = KL(Qν(x|r)||pθ(x, r)) (8.15)

which is based on Jensen’s inequality [25], and KL is the Kullback–Leibler
divergence between two distributions. For learning, (8.14) will sum over the
observations in the training set, omitted here for clarity. We have intro-
duced a variational distribution Qν and have selected it to be exactly the
recognition model. This is the same as maximizing a lower bound on the
log-marginal (observation) probability of the generative model, with equality
when Qν(x|r) = pθ(x|r).

log pθ(r) −KL(Qν(x|r)||pθ(x|r)) = KL(Qν(x|r)||pθ(x, r)) (8.16)

According to (8.14) and (8.16), optimizing a variational bound on the
observed data is equivalent to minimizing the KL divergence between the
state distribution inferred by the generative model p(x|r) and the one pre-
dicted by the recognition model Qν(x|r). This is equivalent to minimizing the
KL divergence between the recognition distribution and the joint distribution
pθ(x, r) – the cost function we work with:
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Algorithm for Bidirectional Model Learning

E-step: νk+1 = arg maxν L(ν, θk)
Train the recognition model using samples from the current generative model.

M-step: θk+1 = arg maxθ L(νk+1, θ)
Train the generative model to have state posterior close to the one predicted by

the current recognition model.

Fig. 8.8. Variational Expectation-Maximization (VEM) algorithm for jointly learn-
ing a generative and a recognition model.

KL(Qν(x|r)||pθ(x, r)) = −
∫
x

Qν(x|r) logQν(x|r) (8.17)

+
∫
x

Qν(x|r) log pθ(x, r) = L(ν,θ) (8.18)

The cost L(ν,θ) balances two conflicting goals: assign values to states that
have high probability under the generative model (the second term), but at
the same time be as uncommitted as possible (the first term measuring the en-
tropy of the recognition distribution). The gradient-based learning algorithm
is summarized in Figure 8.8 and is guaranteed to converge to a locally opti-
mal solution for the parameters. The procedure is, in principle, self-supervised
(one has to only provide the image of a human without the corresponding 3D
human joint angle values), but one can initialize by training the recogni-
tion and the generative models separately using techniques described in §8.4
and §8.5.

Online inference (3D reconstruction and tracking) is straightforward
using the E-step in Figure 8.8. But for efficiency one can work only with the
recognition model c.f let@tokeneonedot (8.11) and only do generative infer-
ence (full E-step) when the recognition distribution has high entropy. The
model then effectively switches between a discriminative density propagation
rule [51,52] and a generative propagation rule [13,24,42,47]. This offers a nat-
ural ‘exploitation-exploration’ or prediction-search tradeoff. An integrated 3D
temporal predictor based on the model operates similarly to existing 2D object
detectors. It searches the image at different locations and uses the recogni-
tion model to hypothesize 3D configurations. Feedback from the generative
model helps to downgrade incorrect competing 3D hypotheses and to decide
on the detection status (human or not) at the analyzed image sub-window. In
Figure 8.9 we show results of this model for the automatic reconstruction of
3D human motion in environments with background clutter. The framework
provides a uniform treatment of human detection, 3D initialization and 3D
recovery from transient failure.
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Fig. 8.9. Automatic human detection and 3D reconstruction using a learned
generative-recognition model that combines bottom-up and top-down processing
[53]. This shows some of difficulties of automatically detecting people and recon-
structing their 3D poses in the real world. The background is cluttered, the limb
constrast is often low, and there is occlusion from other objects (e.g., the chair) or
people.

8.7 Training Sets and Representation

It is difficult to obtain ground truth for 3D human motion and even harder
to train using many viewpoints or lighting conditions. In order to gather
data one can use packages like Maya (Alias Wavefront) with realistically ren-
dered computer graphics human surface models, animated using human mo-
tion capture [2,18,37,41,47,51,52,63]. 3D human data capture databases have
emerged more recently for both motion capture [1, 38] and for human body
laser-scans [3]. Alternatively, datasets based on photo-realistic multicamera
human reconstruction algorithms can be used [10]. The human representation
(x) is usually based on an articulated skeleton with spherical joints, and may
have 30–60 d.o.flet@tokeneonedot.

8.8 Challenges and Open Problems

One of the main challenges for the human motion sensing community today is
to automatically understand people in vivo. We need to find where the people
are, infer their poses, recognize what they do and perhaps what objects do
they use or interact with. However, many of the existing human tracking sys-
tems tend to be complex to build and computationally expensive. The human
structural and appearance models used are often built off-line and learned only
to a limited extent. The algorithms cannot seamlessly deal with high struc-
tural variability, multiple interacting people and severe occlusion or lighting
changes, and the resulting full body reconstructions are often qualitative yet
not photorealistic. An entirely convincing transition between the laboratory
and the real world remains to be realized.

In the long run, in order to build reliable human models and algorithms
for complex, large-scale tasks, it is probable that learning will play a major
role. Central themes are likely to be the choice of representation and its gen-
eralization properties, the role of bottom-up and top-down processing, and
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the importance of efficient search methods. Exploiting the problem structure
and the scene context can be critical in order to limit inferential ambiguities.
Several directions may be fruitful to investigate in order to advance existing
algorithms:

• The role of representation. Methods to automatically extract complex,
possibly hierarchical models (of structure, shape, appearance and dynam-
ics) with the optimal level of complexity for various tasks, from typical,
supervised and unsupervised datasets. Models that can gracefully handle
partial views and multiple levels of detail.

• Cost functions adapted for learning human models with good generaliza-
tion properties. Algorithms that can learn reliably from small training
sets.

• Relative advantages of bottom-up (discriminative, conditional) and top-
down (generative) models and ways to combine them for initialization and
for recovery from tracking failure.

• Inference methods for multiple people and for scenes with complex data
association. Algorithms and models able to reliably handle occlusion, clut-
ter and lighting changes. The relative advantages of 2D and 3D models and
ways to jointly use them.

• The role of context in resolving ambiguities during state inference. Meth-
ods for combining recognition and reconstruction.
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Summary. This chapter presents a Continuous Movement Recognition (CMR)
framework which forms a basis for segmenting continuous human motion to recog-
nize actions as demonstrated through the tracking and recognition of hundreds of
skills from gait to twisting summersaults. A novel 3D color clone-body-model is
dynamically sized and texture mapped to each person for more robust tracking of
both edges and textured regions. Tracking is further stabilized by estimating the
joint angles for the next frame using a forward smoothing Particle filter with the
search space optimized by utilizing feedback from the CMR system. A new paradigm
defines an alphabet of dynemes being small units of movement, to enable recognition
of diverse actions. Using multiple Hidden Markov Models, the CMR system attempts
to infer the action that could have produced the observed sequence of dynemes.

9.1 Introduction

One of the biggest hurdles in human–computer interaction is the current
inability for computers to recognize human activities. We introduce hierar-
chical Bayesian models of concurrent movement structures for temporally
segmenting this complex articulated human motion. An alphabet of these mo-
tion segments are then used for recognizing activities to enable applications
to extend augmented reality and novel interactions with computers.

Research into computer vision based tracking and recognizing human
movement has so far been mostly limited to gait or frontal posing [52].
This chapter presents a Continuous Movement Recognition (CMR) framework
which forms a basis for the general analysis and recognition of continuous hu-
man motion as demonstrated through tracking and recognition of hundreds of
skills from gait to twisting somersault. A novel 3D color clone-body-model is
dynamically sized and texture mapped to each person for more robust tracking
of both edges and textured regions. Tracking is further stabilized by estimat-
ing the joint angles for the next frame using a forward smoothing Particle
filter with the search space optimized by utilizing feedback from the CMR
system. A new paradigm defines an alphabet of dynemes, units of full-body
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Fig. 9.1. Overview of the continuous movement recognition framework.

movement skills, to enable recognition of diverse skills. Using multiple Hidden
Markov Models, the CMR system attempts to infer the human movement
skill that could have produced the observed sequence of dynemes. The novel
clone-body-model and dyneme paradigm presented in this chapter enable the
CMR system to track and recognize hundreds of full-body movement skills
thus laying the basis for effective human-computer interactions associated
with full-body movement activity recognition.

Human movement is commercially tracked1 by requiring subjects to wear
joint markers/identifiers, an approach witch has the disadvantage of significant
set up time. Such a marker based approach to tracking has barely changed
since it was developed in the 1970s. Such commercial marker based tracking
systems produce motion capture files (mocap files) of joint angles. An impor-
tant aspect of computer vision is the analysis of motion and other chapters
in this book use mocap files for both analysis (“MoCap for Interaction En-
vironments” by Daniel Grest in Chapter 14) and validation (“Recognition
and Synthesis of Actions using a Dynamic Bayes Network” by Volker Krger
in Chapter 3). Chapter 20 “Automatic Classification and Retrieval of Mo-
tion Capture Data” (by Meinard Mueller) also investigates using mocap files
to recognize skills based on 3D marker coordinates without using any image
processing.

Using approaches free of the markers used to generate mocap files, com-
puter vision research into tracking and recognizing full-body human motion
has so far been mainly limited to gait or frontal posing [52]. Various approaches
for tracking the whole body have been proposed in the image processing liter-
ature using a variety of 2D and 3D shape models and image models as listed
in Table 9.1.

The approaches described above determine body/part orientation by
tracking only the edges or same-color regions. To improve tracking accuracy
and robustness by also tracking the textured colors within regions, this chapter
describes a clone-body-model.

1 Commercially available trackers are listed at www.hitl.washington.edu/
scivw/tracker-faq.html.
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Table 9.1. Comparison of different human body models.

Stick 2D 3D Feature
model contour volume based

Karaulova et al., 2000 �
Guo et al., 1994 �
Wren et al., 2000 �
Iwai et al., 1999 �
Luo et al., 1992 �
Yaniz et al., 1998 �
Schrotter G. et al., 2005 �
Remondino F. 2003 �
Theobalt C. et al., 2002 �
Bregler C., 2004 �
Silaghi et al., 1998 �
Leung and Yang, 1995 �
Chang and Huang, 1996 �
Niyogi and Adelson, 1994 �
Black and Yaccob, 1996 �
Kameda et al., 1993 �
Kameda et al., 1995 �
Hu et al., 2000 �
Rohr, 1994 �
Wachter and Nagel, 1999 �
Rehg and Kanade, 1995 �
Kakadiaris, 1996 �
Goddard, 1994 �
Bregler and Malik, 1998 �
Mark J, 2004 �
Munkelt et al., 1998 �
Delamarre, 1999 �
Urtasun R. and Fua P. 2004 �
Huang Y. and Huang T. 2002 �
Bhatia S. et al., 2004 �
Luck et al., 2001 �
Polana and Nelson, 1994 �
Yang R. et al., 2001 �
Segen and Pingali, 1996 �
Jang and Choi, 2000 �
Rosales and Sclaroff, 1999 �
Krinidis M. et al., 2005 �
Li D. et al., 2005 �
Nguyen et al., 2001 �

This model is dynamically sized and texture mapped to each person, en-
abling of both edge and region tracking to occur. No previous approaches use
such a method as can be seen in Table 9.1. The prediction of joint angles
for the next frame is cast as an estimation problem, which is solved using
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a Particle filter with forward smoothing. This approach optimizes the huge
search space related to calculating so many particles for these 32 degrees of
freedom (DOF) used in our model (see Table 9.3) by utilizing feedback from
the recognition process.

Human–computer interactions will become increasingly effective as com-
puters more accurately recognize and understand full-body movement in terms
of everyday activities. Stokoe began recognizing human movement in the 1970s
by constructing sign language gestures (signs) from hand location, shape and
movement and assumed that these three components occur concurrently with
no sequential contrast (independent variation of these components within a
single sign). Ten years later Liddel and Johnson used sequential contrast and
introduced the movement-hold model. In the early 1990s Yamato et al began
using Hidden Markov Models (HMMs) to recognize tennis strokes. Recog-
nition accuracy rose as high as 99.2% in Starner and Pentland’s work in
1996. Constituent components of movement have been named cheremes [69],
phonemes [74] and movemes [8].

Most movement recognition research (Table 9.2) has been limited to
frontal posing of a constrained range of partial-body motion. By contrast, this
chapter describes a computer vision based framework that recognizes contin-
uous full-body motion of hundreds of different movement skills (Figure 9.2).
The full-body movement skills in this study are constructed from an alphabet
of 35 dynemes – the smallest contrastive dynamic units of human movement.

Table 9.2. Human movement recognition research.

Template State
matching based

Cui and Weng, 1997 �
Polana and Nelson, 1994 �
Boyd and Little, 1997 �
Bobick and Davis, 1996 �
Davis and Bobick, 1997 �
Silaghi et al., 1998 �
Collins R., 2002 �
Zhong H., 2004 �
Starner and Pentland, 1995 �
Yamato et al., 1992 �
Brand et al., 1997 �
Bregler, 1997 �
Campbell and Bobick, 1995 �
Gao J. and Shi J., 2004 �
Chen D. et al., 2004 �
Bauckhage C. et al., 2004 �
Kumar S. 2005 �
Green, 2004 �
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Fig. 9.2. CMR system tracking and recognizing a sequence of movement skills.

Using a novel framework of multiple HMMs the recognition process attempts
to infer the human movement skill that could have produced the observed
sequence of dynemes. This dyneme approach has been inspired by the para-
digm of the phoneme as used by the continuous speech recognition research
community where pronunciation of the English language is constructed from
approximately 50 phonemes which are the smallest contrastive phonetic units
of human speech.

9.2 Tracking

Various approaches for tracking the whole body have been proposed in the
image processing literature. They can be distinguished by the representation
of the body as a stick figure, 2D contour or volumetric model and by their
dimensionality being 2D or 3D. Volumetric 3D models have the advantage of
being more generally valid with self occlusions more easily resolved [5]. They
also allow 3D joint angles to be able to be more directly estimated by mapping
3D body models onto a given 2D image. Most volumetric approaches model
body parts using generalized cylinders [57] or super-quadratics [54]. Some
extract features [78], others fit the projected model directly to the image
[57] and in the Chapter 15 by Lars Mndermann, he uses an individual, laser
scanned model.

9.2.1 Clone-Body-Model

Cylindrical, quadratic and ellipsoidal [30] body models of previous studies
do not contour accurately to the body, thus decreasing tracking stability. To
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overcome this problem, in this research 3D clone-body-model regions are sized
and texture mapped from each body part by extracting features during the
initialization phase. This clone-body-model has a number of advantages over
previous body models:

• It allows for a larger variation of somatotype (from ectomorph to endo-
morph), gender (cylindrical trunks do not allow for breasts or pregnancy)
and age (from baby to adult).

• Exact sizing of clone-body-parts enables greater accuracy in tracking
edges, rather than the nearest best fit of a cylinder.

• Texture mapping of clone-body-parts increases region tracking and orien-
tation accuracy over the many other models which assume a uniform color
for each body part.

• Region patterns, such as the ear, elbow and knee patterns, assist in accu-
rately fixing orientation of clone-body-parts.

The clone-body-model proposed in this chapter is a 3D model of the body
consisting of a set of clone-body-parts, connected by joints, similar to the
representations proposed by Badler [3]. Clone-body-parts include the head,
clavicle, trunk, upper arms, forearms, hands, thighs, calves and feet. Degrees
of freedom are modeled for gross full body motion (Table 9.3). Degrees of
freedom supporting finer resolution movements are not yet modeled, including
the radioulnar (forearm rotation), interphalangeal (toe), metacarpophalangeal
(finger) and carpometacarpal (thumb) joint motions.

Each clone-body-part is a 3D model of a part of the body consisting of
a rigid spine with pixels radiating out (Figure 9.3) with up to three DOF
for each joint linking the clone-body-parts. Each pixel represents a point on
the surface b() of a clone-body-part. Associated with each pixel is: cylindrical
coordinate (where d is the distance and θ is the angle), r is the radius or
thickness of the clone-body-part at that point; h, s, i is the color as in hue,
saturation and intensity; ahsi is the accuracy of the color; ar is the accuracy

Table 9.3. Degrees of freedom associated with each joint.

Joint DOF

Neck (atlantoaxial) 3
Shoulder 3*
Clavicle 1*
Vertebrae 3
Hip 3*
Elbow 1*
Wrist 2*
Knee 1*
Ankle 2*

* double for 32 total
left and right
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Fig. 9.3. Clone-body-model consisting of clone-body-parts which have a cylindrical
coordinate system of surface points.

Fig. 9.4. Clone-body-model example rotating through 360 degrees.

of the radius; and er is the elasticity of radius inherent in the body part at
that point. Although each point on a clone-body-part is defined by cylindrical
coordinates, the radius varies in a cross section to exactly follow the contour
of the body as shown in Figure 9.4.

Automated initialization assumes only one person is walking upright in
front of a static background initially with gait being a known movement
model. Anthropometric data [30] is used as a Gaussian prior for initializing
the clone-body-part proportions with left-right symmetry of the body used as
a stabilizing guide from 50th percentile proportions. Such constraints on the
relative size of clone-body-parts and on limits and neutral positions of joints
help to stabilize initializations. Initially a low accuracy is set for each clone-
body-part with the accuracy increasing as structure from motion resolves the
relative proportions. For example, a low color and high radius accuracy is
initially set for pixels near the edge of a clone-body-part, high color and low
radius accuracy for other near side pixels and a low color and low radius ac-
curacy is set for far side pixels. The ongoing temporal resolution following
self-occlusions enables increasing radius and color accuracy. Breathing, mus-
cle flexion and other normal variations of body part radius are accounted for
by the radius elasticity parameter.

9.2.2 Kinematic Model

The kinematic model tracking the position and orientation of a person relative
to the camera entails projecting or aligning 3D clone-body-model parts with a
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Fig. 9.5. Three homogeneous transformation functions B(), C(), I() project a point
from a clone-body-part onto a pixel in the 2D image.

2D image of the person using a kinematic chain of three chained homogeneous
transformation matrices as illustrated in Figure 9.5:

p(x, b) = Ii(x,Ci(x,Bi(x, b))) (9.1)

where x is a parameter vector calculated for optimum alignment of the pro-
jected body model with the image of the person in the ith video frame,
B is the Body frame-of-reference transformation, C is the Camera frame-
of-reference transformation, I is the Image frame-of-reference transformation,
b is a body-part surface point, p is a pixel in 2D frame of video [32]. The three
transformations, B(x), C(x) and I(x) which are chained together into a single
transformation in equation 9.1, are illustrated separately in Figure 9.5. B()
maps each surface point of each 3D clone-body-model part onto the full 3D
clone-body frame-of-reference to support joint angles. C() then maps this full
clone-body frame-of-reference into the 3D space within which the person is
moving to support the six degrees of freedom of the body as a whole. Finally,
I() maps the camera’s perspective of the person in a 3D space onto the actual
image of a person to support alignment of the clone-body-model with that
person’s pose.

Joint angles are used to track the location and orientation of each body
part, with the range of joint angles being constrained by limiting the DOF
associated with each joint. A simple motion model of constant angular velocity
for joint angles is used in the kinematical model. Each DOF is constrained
by anatomical joint-angle limits, body-part inter-penetration avoidance and
joint-angle equilibrium positions modeled with Gaussian stabilizers around
their equilibria. To stabilize tracking, the joint angles are predicted for the
next frame. The calculation of joint angles, for the next frame, is cast as
an estimation problem which is solved using a Particle filter (Condensation
algorithm).
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9.2.3 Particle Filter

The Particle Filter is used in computer vision to address the problem of
tracking objects moving in front of cluttered backgrounds [33], [34] where it
is difficult to segment an object from the background in each video frame.
The filter attempts to predict where an object will be in the next frame to
improve tracking stability. The Particle filter’s output at a given time-step
(video frame) estimates a number of possible different postions for an object,
rather than just a single estimate of one position (and covariance) as in a
Kalman filter. This allows the Particle filter to maintain multiple hypotheses
and thus be robust to distracting cluttered background by tracking a number
of possible positions with a probability assigned to each position. That is, in
each frame of video, z, the Particle Filter is tracking 32 joint angles, where
these joint angles represent the state, x, of the object being tracked. Also, for
each joint angle, there is a set, s, of alternate values.

With a motion vector of about 32 joint angles (32 DOF) to be determined
for each frame of video, there is the potential for exponential complexity when
evaluating such a high dimensional search space. MacCormick [49] proposed
Partitioned Sampling and Sullivan [68] proposed Layered Sampling to reduce
the search space by partitioning it for more efficient particle filtering. Although
Annealed Particle Filtering [15] is an even more general and robust solution,
it struggles with efficiency which Deutscher [16] improves with Partitioned
Annealed Particle Filtering.

The Particle Filter is a simpler algorithm than the more popular Kalman
Filter. Moreover despite its use of random sampling, which is often thought to
be computationally inefficient, the Particle filter can run in real-time. This is
because tracking over time maintains relatively tight distributions for shape
at successive time steps and particularly so given the availability of accurate
learned models of shape and motion from the human-movement-recognition
(CMR) system. In this chapter, the Particle filter attempts to estimate the
joint angles in the next video frame (State Density) using the joint angles
from the previous frame (Prior Density), using the kinematic/body models
(Process Density) and using image data from the next video frame (Observa-
tion Density).

So here the particle filter has:
Three probability distributions in the problem specification:

1. Prior density p(xt−1|zt−1) for the state xt−1, where xt−1=joint angles in
previous frame, zt−1

2. Process density p(xt|xt−1) for kinematic and clone-body-models, where
xt−1=previous frame, xt=next frame

3. Observation density p(zt−1|xt−1) for image zt−1 in previous frame

One probability distribution in the solution specification:

• State Density p(xt|Zt): where xt is the joint angles in next frame Zt
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1. Prior density: Sample st from the prior density p(xt−1|zt−1) where
xt−1=joint angles in previous frame, zt−1. The sample set consists of possible
alternate values for joint angles. When tracking through background clutter
or occlusion, a joint angle may have N alternate possible values (samples) s
with respective weights w, where prior density,

p(xt−1|zt−1) ≈ St−1 = (s(n), wt−1)

where n = 1..N is a sample set, St−1 is the sample set for the previous frame,
w(n) is the n(th) weight of the n(th) sample s(n)

For the next frame, a new sample, st is selected from a sample in the
previous frame, st−1.

2. Process density: Predict st from the process density p(xt|xt−1 = st).
Joint angles are predicted for the next frame using the kinematic model, body
model and error minimization. A joint angle, s in the next frame is predicted
by sampling from the process density, p(xt|xt−1 = s) which encompasses the
kinematic model, clone-body-model and cost function minimization. In this
prediction step both edge and region information are used. The edge align-
ment error is calculated by directly matching the image gradients with the
expected body model edge gradients (sum of squares of edge differences in
Equation 9.2). The region alignment error is calculated by directly matching
the values of pixels in the image with those on the clone-body-model’s 3D
color texture map (Equation 9.3). The prediction step involves minimizing
the cost functions (measurement likelihood density). That is, the prediction
step involves minimizing errors aligning the edges of the body model with the
image and aligning the texture map of the body model with the image:

edge alignment error Ee using edge information (sum of squares of differ-
ence between edges in image and model):

Ee(St) =
1

2neve

∑
x,y

(|∇it(x, y)|−mt(x, y, St))
2 +0.5(S−St)

T C−1
t (S−St) → minSt

(9.2)

region alignment error Er using region information (sum of squares of differ-
ence between model texture map and image pixels):

Er(St) =
1

2nrvr

nr∑
j=1

(∇it[pj(St)] − it−1[pj(St−1)])2 + Ee(St) → minSt (9.3)

where it represents an image (of size x pixels by y pixels) at time t,mt is the
model gradients at time t, ne is the number of edge values summed, ve is the
edge variance, nr is the number of region values summed, vr is the region
variance, pj is the image pixel coordinate of the jth surface point on a clone-
body-part. Use of both cost functions at the same time requires optimization
in a Pareto sense to avoid only one function being optimal in the end.

3. Observation density: Measure and weigh the new position in terms
of the observation density, p(zt|xt). Weights wt = p(zt|xt = st) are estimated
and then weights
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n∑
w(n) = 1

are normalized. The new position in terms of the observation density, p(zt|xt)
is then measured and weighed with forward smoothing :

• Smooth weights wt over 1..t, for n trajectories
• Replace each sample set with its n trajectories (st, wt) for 1..t
• Re-weight all w(n) over 1..t

Trajectories of different estimates for the same joint angle tend to merge
within 10 frames:

• O(Nt) storage prunes down to O(N)

In this research, feedback from the CMR system utilizes the large training
set of skills to achieve an even larger reduction of the search space. In prac-
tice, human movement is found to be highly efficient for most activities, with
minimal DOFs rotating at any one time. The equilibrium positions and phys-
ical limits of each DOF further stabilize and minimize the dimensional space.
With so few DOFs to track at any one time, a minimal number of particles
are required, significantly raising the efficiency of the tracking process. Such
highly constrained movement results in a sparse domain of motion projected
by each motion vector. Because the temporal variation of related joints and
other parameters also contains information that helps the recognition process
infer dynemes, the system computes and appends the temporal derivatives and
second derivatives of these features to form the final motion vector. Hence, the
motion vector includes joint angles (32 DOF), body location and orientation
(6 DOF), centre of mass (3 DOF), principle axis (2 DOF) all with first and
second derivatives.

9.3 Recognition

To simplify the design, it is assumed that the CMR system contains a limited
set of possible human movement skills. This approach restricts the search for
possible skill sequences to those skills listed in the skill model, which lists the
candidate skills and provides dynemes – an alphabet of granules of human
motion – for the composition of each skill. The current skill model contains
hundreds of skills where the length of the skill sequence being performed is
unknown. If M represents the number of human movement skills in the skill
model, the CMR system could hypothesize MN possible skill sequences for
a skill sequence of length N . However these skill sequences are not equally
likely to occur due to the biomechanical constraints of human motion. For
example, the skill sequence stand jump lie is much more likely than stand lie
jump (as it is difficult to jump from a lying down position). Given an observed
sequence of Ψ motion vectors y = (y1...yΨ ), the recognition process attempts
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Fig. 9.6. The dyneme, skill, context and activity models construct a hypothesis for
interpreting a video sequence.

to find the skill sequence SN
1 = (S1..SΨ ) that maximizes this skill sequence’s

probability:

SN
1 = arg max

SN
1

p(sN
1 |yΨ

1 ) ≡ arg max
SN

1

p(yΨ
1 |sN

1 )p(sN
1 ) (9.4)

This approach applies Bayes’ law and ignores the denominator term to
maximize the product of two terms: the probability of the motion vectors given
the skill sequence and the probability of the skill sequence itself. The CMR
framework described by this Equation 9.4 is illustrated below in Figure 9.6
where, using motion vectors from the tracking process, the recognition process
uses the dyneme, skill, context and activity models to construct a hypothesis
for interpreting a video sequence.

In the tracking process, motion vectors are extracted from the video
stream. In the recognition process, the search hypothesizes a probable move-
ment skill sequence using four models:

1. Dyneme model models the relationship between the motion vectors and
the dynemes.

2. Skill model defines the possible movement skills that the search can
hypothesize, representing each movement skill as a linear sequence of
dynemes.
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3. Context model models the semantic structure of movement by modelling
the probability of sequences of skills simplified to only triplets or pairs of
skills as discussed in Section 3.3 below.

4. Activity model defines the possible human movement activities that the
search can hypothesize, representing each activity as a linear sequence of
skills (not limited to only triplets or pairs as in the context model).

Three principle components comprise the basic hypothesis search: a dyneme
model, a skill model and a context model.

9.3.1 Dyneme Model

As the phoneme is a phonetic unit of human speech, so the dyneme is a dy-
namic unit of human motion. The word dyneme is derived from the Greek
dynamikos “powerful”, from dynamis “power”, from dynasthai “to be able”
and in this context refers to motion. This is similar to the phoneme being
derived from phono meaning sound and with eme inferring the smallest con-
trastive unit. Thus dyn-eme is the smallest contrastive unit of movement. The
movement skills in this study are constructed from an alphabet of 35 dynemes
which HMMs used to recognize the skills. This approach has been inspired by
the paradigm of the phoneme as used by the continuous speech recognition re-
search community where pronunciation of the English language is constructed
from approximately 50 phonemes

The dyneme can also be understood as a type of movement notation. An
example of a similar movement notation system is that used in dance. Many
dance notation systems have been designed over the centuries. Since 1928,
there has been an average of one new notation system every 4 years [32]. Cur-
rently, there are two prominent dance notation systems in use: Labanotation
and Benesh.

Although manual movement notation systems have been developed for
dance, computer vision requires an automated approach where each human
movement skill has clearly defined temporal boundaries. Just as it is necessary
to isolate each letter in cursive handwriting recognition, so it is necessary in
the computer vision analysis of full-body human movement to define when
a dyneme begins and ends. This research defined an alphabet of dynemes
by deconstructing (mostly manually) hundreds of movement skills into their
correlated lowest common denominator of basic movement patterns.

Although there are potentially an infinite number of movements the hu-
man body could accomplish, there are a finite number ways to achieve motion
in any direction. For simplicity, consider only xy motion occurring in a fron-
toparallel plane:

• x translation caused by:
– Min–max of hip flexion/extension – e.g., gait, crawl
– Min–max of hip abduction/adduction or lateral flexion of spine – e.g.

cartwheel
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– Min–max of shoulder flexion – e.g., walk on hands, drag-crawl
– Rotation about the transverse (forward roll) or antero-posterior (cart-

wheel) or longitudinal (rolling) axes
– Min–max foot rotation – e.g., isolated feet based translation
– Min–max waist angle – e.g., inch-worm

• y translation caused by:
– Min–max Center of Mass (COM) – e.g., jump up, crouch down

• no x or y translation:
– Motion of only one joint angle – e.g., head turn
– Twist – rotation about the longitudinal axis – e.g., pirouette

The number of dynemes depends on the spatial-temporal resolution threshold.
A dyneme typically encapsulates diverse fine granules of motion. A gait step
dyneme for example, encompasses diverse arm motions (shoulder and elbow
angular displacements, velocities and accelerations) where some arm move-
ments have a higher probability of occurring during the step dyneme than
others.

A hidden Markov model offers a natural choice for modelling human move-
ment’s stochastic aspects. HMMs function as probabilistic finite state ma-
chines: The model consists of a set of states and its topology specifies the
allowed transitions between them. At every time frame, a HMM makes a
probabilistic transition from one state to another and emits a motion vector
with each transition.

Figure 9.7 shows a HMM for a dyneme where the state transition proba-
bilities p1 = p(y|1), p2 = p(y|2), p3 = p(y|3) govern the possible transitions
between states of 1-p1, 1-p2, 1-p3 respectively. A set of state transition proba-
bilities – p1, p2 and p3 – governs the possible transitions between states. They
specify the probability of going from one state at time t to another state at
time t + 1. The motion vectors emitted while making a particular transition
represent the characteristics for the human movement at that point, which
vary corresponding to different executions of the dyneme. A probability dis-
tribution or probability density function models this variation. The functions
– p(y|1), p(y|2) and p(y|3) – can be different for different transitions. These
distributions are modeled as parametric distributions – a mixture of multidi-
mensional Gaussians. The HMM shown in Figure 9.7 consists of three states.

Fig. 9.7. Hidden Markov Model for a dyneme.



9 Segmenting Movement to Recognize Actions 227

The dyneme’s execution starts from the first state and makes a sequence of
transitions to eventually arrive at the third state. The duration of the dyneme
equals the number of video frames required to complete the transition se-
quence. The three transition probabilities implicitly specify a probability dis-
tribution that governs this duration. If any of these transitions exhibit high
self-loop probabilities, the model spends more time in the same state, conse-
quently taking longer to go from the first to the third state. The probability
density functions associated with the three transitions govern the sequence
of output motion vectors. A fundamental operation is the computation of
the likelihood that a HMM produces a given sequence of motion vectors. For
example, assume that the system extracted T motion vectors from human
movement corresponding to the execution of a single dyneme and that the
system seeks to infer which dyneme from a set of 35 was performed. The pro-
cedure for inferring the dyneme assumes that the ith dyneme was executed
and finds the likelihood that the HMM for this dyneme produced the observed
motion vectors. If the sequence of HMM states is known, the probability of a
sequence of motion vectors can be easily computed. In this case, the system
computes the likelihood of the tth motion vector, yt, using the probability
density function for the HMM state being active at time t. The likelihood of
the complete set of T motion vectors is the product of all these individual
likelihoods. However, because the actual sequence of transitions is not known,
the likelihood computation process sums all possible state sequences. Given
that all HMM dependencies are local, efficient formulas can be derived for
performing these calculations recursively [36].

With various dynemes overlapping, a hierarchy of dynemes is required to
clearly define the boundary of each granule of motion and so define a high
level movement skill as the construction of a set of dynemes. For example, a
somersault with a full-twist rotates 360◦ about the transverse axis in the som-
ersault and 360◦ about the longitudinal axis in the full-twist. This twisting-
somersault is then an overlap of two different rotational dynemes. Whole body
rotation is more significant than a wrist flexion when recognizing a skill in-
volving full body movement. To this end, dynemes have different weights in
the Skill Model (HMM) to support the following descending hierarchy of five
dyneme categories:

• Full body rotation
• COM motion (including flight)
• Static pose
• Weight transfer
• Hierarchy of DOFs

Each category of motion is delineated by a pause, min, max, or full, half,
quarter rotations. For example, a COM category of dyneme is illustrated in
Figure 9.8a where each running step is delimited by COM minima. A full 360◦

rotation of the principle axis during a cartwheel in Figure 9.8b illustrates a
rotation dyneme category.
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Fig. 9.8. COM parameters during running and principle-axis parameters through
a cartwheel.

Fig. 9.9. Rotating about the x-axis/Transverse axis (somersault), Y axis/
Antero-posterior axis (cartwheel), and the z-axis/Longitudinal axis (turn/twist).

The 35 dynemes are:

• Full body rotation: 3 dynemes
– 3 rotation DOF dynemes (rotations about the transverse, antero-

posterior and longitudinal axes) as shown in Figure 9.9.
• COM motion: 4 dynemes

– 3 translational DOF dynemes and 1 flight dyneme (special case of ver-
tical)

• Static pose: 1 dyneme
– 1 stationary dyneme

• Weight transfer: 2 dynemes
– 2 dynemes for left weight transfer (left step) and right weight transfer

(right step)
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• Hierarchy of DOFs: 25 dynemes (included left and right)
– 6 hip dynemes
– 2 knee dynemes
– 6 shoulder dynemes
– 2 elbow dynemes
– 3 neck (atlantoaxial) dynemes
– 2 vertebrae dynemes
– 4 ankle dynemes

This simplified list of dynemes could actually be thought of as a total
of 66 dynemes if direction is taken into account with an extra three
rotation dynemes (anti/clock wise), an extra three translation dynemes
(up/down/left/right/backward/forward) and an extra 25 joint dynemes (flex-
ion/extension). Notice also that although 32 DOF were required for accurate
tracking, not all DOF were needed to recognize skills in the training set.
(Omitted are 4 wrist DOF, 2 clavicle DOF and 1 vertebrae DOF.)

A dyneme model computes the probability of motion vector sequences un-
der the assumption that a particular skill produced the vectors. Given the
inherently stochastic nature of human movement, individuals do not usually
perform a skill in exactly the same way twice. The variation in a dyneme’s
execution manifests itself in three ways: duration, amplitude and phase varia-
tions. Further, dynemes in the surrounding context can also cause variations
in a particular dyneme’s duration, amplitude and phase relationships, a phe-
nomenon referred to in this chapter as coexecution. Hence, in some cases the
dynemes in the surrounding context affect a particular dyneme’s motion vec-
tor sequence. This coexecution phenomenon is particularly prevalent in poorly
executed movement skills. The system models coexecution by assuming that
the density of the observations depends on both the specific dyneme and the
surrounding dynemes. However, modelling every dyneme in every possible
context generates a prohibitively large number of densities to be modeled.
For example, if the dyneme alphabet consists of 35 dynemes, and the system
models every dyneme in the context of its immediately surrounding neigh-
bors, it would need to model 42,875 densities. Consequently, the approach
taken here clusters the surrounding dynemes into a few equivalence classes of
categories, thus reducing the densities that require modelling [36].

9.3.2 Skill Model

The typical skill model shown in Table 9.4 lists each skill’s possible executions,
constructed from dynemes. An individual movement skill can have multiple
forms of execution which complicates recognition.

The system chooses the skill model on a task-dependent basis, trading off
skill-model size with skill coverage. Although a search through many videos
can easily find dyneme sequences representing commonly used skills in var-
ious sources, unusual skills in highly specific situations may require manual
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Table 9.4. Typical minimal dyneme skill model (with the skill walk having two
alternative executions).

Movement skill Dyneme

Walk step (right), step (left)
Walk step (left), step (right)
Handstand from stand step, rotate-fwd (1800)
Jump knee-extension, COM-flight
Backward somersault knee-extension, COM-flight, rotate-bwd (3600)

specification of the dyneme sequence. In fact the initial definition of skills in
terms of dynemes involved extensive manual specification in this research.

9.3.3 Context Model

The search for the most likely skill sequence in Equation 9.4 requires the
computation of two terms, p(yT

1 |sN
1 ) and p(sN

1 ). The second of these compu-
tations is the context model which assigns a probability to a sequence of skills,
sN
1 . The simplest way to determine such a probability would be to compute

the relative frequencies of different skill sequences. However, the number of
different sequences grows exponentially with the length of the skill sequence,
making this approach infeasible.

A typical approximation assumes that the probability of the current skill
depends on the previous one or two skills only, so that the computation can
approximate the probability of the skill sequence as:

p(sN
1 ) ≈ p(s1)p(s2|s1)

i=N∏
i=3

p(si|si−1, si−2) (9.5)

where p(si|si−1, si−2) can be estimated by counting the relative frequencies
of skill triplets:

p(si|si−1, si−2) ≈ μ(si, si−1, si−2)/μ(si−1, si−2) (9.6)

Here, refers to the associated event’s relative frequency. This context
model was trained using hundreds of skills to estimate p(si|si−1, si−2). Even
then, many skill pairs and triplets do not occur in the training videos, so
the computation must smooth the probability estimates to avoid zeros in the
probability assignment [18].

9.3.4 Training

Before using a HMM to compute the likelihood values of motion vector se-
quences, the HMMs must be trained to estimate the model’s parameters. This
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process assumes the availability of a large amount of training data, which
consists of the executed skill sequences and corresponding motion vectors
extracted from the video stream. The maximum likelihood (ML) estimation
process training paradigm is used for this task. Given a skill sequence and cor-
responding motion vector sequence, the ML estimation process tries to choose
the HMM parameters that maximize the training motion vectors’ likelihood
computed using the HMM for the correct skill sequence. If yT

1 represents a
sequence of T motion vectors, and sN

1 represents the corresponding correct
skill sequence, then the ML estimate of the parameters of the HMM, θ̂ is

θ̂ML = arg max
θ

log[pθ(yT
1 |sN

1 )] (9.7)

The system begins the training process by constructing a HMM for the
correct skill sequence. First, it constructs the HMMs for each skill by concate-
nating the HMMs for the dynemes that compose that skill. Then it concate-
nates the skill HMMs to form the HMM for the complete skill sequence where
the transitional probabilities between connecting states for these HMMs are
set to one and those between non-connecting states are set to zero. For ex-
ample, the HMM for the sequence, “skip” would be the concatenation of the
two dynemes, “step, hop”.

The training process assumes that the system can generate the motion
vectors yT

1 by traversing the HMM from its initial state to its final state in T
time frames. However, because the system cannot trace the actual state se-
quence, the ML estimation process assumes that this state sequence is hidden
and averages all possible state sequence values since the number of states in
the analyzed motion vector sequence is unknown and should be determined
by searching the optimal values. By using xt to denote the hidden state at
time t, the system can express the maximization of Equation 9.7 in terms of
the parameters of the HMM’s hidden states, θ̂ as follows:

θ̂ML = arg max
θ̂

T∑
t=1

∑
St

pθ(xt|yT
1 ) log[p

θ̂
(yt|xt)] (9.8)

The system uses an iterative process to solve Equation 9.8, where each
iteration involves an expectation step and a maximization step. The first step
(expectation step) involves the computation of pθ(xt|yT

1 ), which is the pos-
terior probability, or count of a state, conditioned on all the motion vec-
tors. The system then uses the current HMM parameter estimates and the
Forward-Backward algorithm [36] to perform this computation. The second
step (maximization step) involves choosing the parameter θ̂ to maximize
Equation 9.5. Using a Gaussian probability density functions, the compu-
tation derives closed-form expressions for this step.
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9.3.5 Hypothesis Search

The hypothesis search seeks the skill sequence with the highest likelihood
given the model’s input features and parameters [36]. Because the number
of skill sequences increases exponentially with the skill sequence’s length, the
search might seem at first to be an intractable problem for anything other than
short skill sequences from a small lexicon of skills. However, because the model
has only local probabilistic dependencies the system can incrementally search
through the hypothesis in a left-to-right fashion and discard most candidates
with no loss in optimality [36].

Although the number of states in the context model can theoretically grow
as the square of the number of skills in the skill model, many skill triplets never
actually occur in the training data. The smoothing operation backs off to skill
pair and single skill estimators, substantially reducing size. To speed up the
recursive process, the system conducts a beam search, which makes additional
approximations such as retaining only hypotheses that fall within threshold
of the maximum score in any time frame.

Given a time-series, the V iterbi1 algorithm computes the most probable
hidden state sequence; the forward–backward algorithm computes the data
likelihood and expected sufficient statistics of hidden events such as state
transitions and occupancies. These statistics are used in Baum-Welch para-
meter re-estimation to maximize the likelihood of the model given the data.
The expectation-maximization (EM) algorithm for HMMs consists of forward-
backward analysis and Baum-Welch re-estimation iterated to convergence at
a local likelihood maximum.

Brand [6] replaced the Baum-Welch formula with parameter estimators
that minimize entropy to avoid the local optima. However, with hundreds of
movement skill samples it is felt that the research in this chapter avoided
this pitfall with a sufficiently large sample size. Viterbi alignment is applied
to the training data followed by Baum-Welch re-estimation. Rather than the
rule based grammar model common in speech processing, a context model is
trained from the movement skill data set. The Hidden Markov Model Tool Kit1

(HTK) version 3.2 (current stable release) is used to support these dyneme,
skill and context models.

The HTK is a portable toolkit for building and manipulating hidden
Markov models. HTK is primarily used for speech recognition research
although it has been used for numerous other applications including research
into speech synthesis, character recognition, gesture recognition and DNA
sequencing. HTK is in use at hundreds of sites worldwide. HTK consists of a
set of library modules and tools available in C source form. The tools provide
sophisticated facilities for speech analysis, HMM training, testing and results

1 An excellent discussion of HMMs and application of Viterbi alignment and Baum-
Welch re-estimation can be found in the extensive HTK documentation of HTK-
Book: http://htk.eng.cam.ac.uk/docs/docs.shtml
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analysis. The software supports HMMs using both continuous density mixture
Gaussians and discrete distributions and can be used to build complex HMM
systems.

9.4 Performance

Hundreds of skills were tracked and classified using a 2 GHz dual core Pen-
tium with 2GB RAM processing 24 bit color within the Microsoft DirectX 9
environment under Windows XP. The video sequences were captured with a
JVC DVL-9800 digital video camera at 30 fps, 720 by 480 pixel resolution.
Each person moved in front of a stationary camera with a static background
and static lighting conditions. Only one person was in frame at any one time.
Tracking began when the whole body was visible which enabled initialization
of the clone-body-model.

The skill error rate quantifies CMR system performance by expressing,
as a percentage, the ratio of the number of skill errors to the number of
skills in the reference training set. Depending on the task, CMR system skill
error rates can vary by an order of magnitude. The CMR system results are
based on a set of a total of 840 movement patterns, from walking to twisting
somersaults. From this, an independent test set of 200 skills were selected
leaving 640 in the training set. Training and testing skills were performed by
the same subjects. These were successfully tracked, recognized and evaluated
with their respective biomechanical components quantified where a skill error
rate of 4.5% was achieved.

Recognition was processed using the (Microsoft owned) Cambridge Univer-
sity Engineering Department HMM Tool Kit (HTK) with 96.8% recognition
accuracy on the training set alone and a more meaningful 95.5% recogni-
tion accuracy for the independent test set where H=194, D=7, S=9, I=3,
N=200 (H=correct, D=Deletion, S=Substitution, I=Insertion, N=test set,
Accuracy=(H-I)/N). 3.5% of the skills were ignored (deletion errors) and 4.5%
were incorrectly recognized as other skills (substitution errors). There was only
about 1.5% insertion errors - that is incorrectly inserting/recognizing a skill
between other skills.

As mentioned previously, the HTK performed Viterbi alignment on the
training data followed by Baum-Welch re-estimation with a context model
for the movement skills. Although the recognition itself was faster than real-
time at about 120 fps, the tracking of 32 DOF with particle filtering was
computationally expensive using up to 16 seconds per frame.

Figure 9.10 illustrates the CMR system recognizing the sequence of skills
stretch and step, cartwheel, step and step from continuous movement. In each
picture, four tiles display CMR processing steps:

1. Principle axis through the body
2. Body frame of reference (normalized to the vertical)
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Fig. 9.10. CMR system recognizing stretching into a cartwheel followed by gait
steps.

Fig. 9.11. CMR system tracking through motion blur of right calf and foot segments
during a flic-flac (back-handspring).

3. Motion vectors are graphed (subset displayed)
4. Recognizing step, stretch and cartwheel indicated by stick figures with

respective snapshots of the skills

As each skill is recognized a snapshot of the corresponding pose is displayed in
the fourth tile. Below each snapshot is a stick figure representing an internal
identification of the recognized skill. Notice that the cartwheel is not recog-
nized after the first quarter rotation. Only after the second quarter rotation
is the skill identified as probably a cartwheel.

Motion blurring lasted about 10 frames on average with the effect of per-
turbing joint angles within the blur envelope as shown in Figure 9.11 where,
a: motion blur of right calf and foot segments, b: alternative particles (knee
angles) for the right calf location, and c: expected value of the distrubution∑

n wtst. Given a reasonably accurate angular velocity, it was possible to
sufficiently de-blur the image. There was minimal motion blur arising from
rotation about the longitudinal axis during a double twisting somersault due
to a low surface velocity tangential to this axis from minimal radius with limbs
held close to a straight body shape. This can be seen in Figure 9.12 where
the arms exhibit no blurring from twisting rotation, contrasted with motion
blurred legs due to a higher tangential velocity of the somersault rotation.
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Fig. 9.12. Minimal motion blur arising from rotation about the longitudinal axis
during a double twisting somersault.

An elongated trunk with disproportionate short legs is the body-model
consequence of the presence of a skirt – the clone-body-model failed to ini-
tialize for tracking due to the variance of body-part proportions exceeding
an acceptable threshold. The CMR system also failed for loose clothing. Even
with smoothing, joint angles surrounded by baggy clothes permutated through
unexpected angles within an envelope sufficiently large as to invalidate the
tracking and recognition.

9.5 Summary

As described in this chapter, recognition of human movement skills was suc-
cessfully processed using the Cambridge University HMM Tool Kit. Proba-
ble movement skill sequences were hypothesized using the recognition process
framework of four integrated models - dyneme, skill, context and activity mod-
els. The 95.5% recognition accuracy (H = 194, D = 7, S = 9, I = 3, N = 200)
validated this framework and the dyneme paradigm. However, the 4.5% error
rate attained in this research is not yet evaluating a natural world environ-
ment nor is this a real-time system with up to 16 seconds to process each
frame. The CMR system did achieve 95.5% recognition accuracy for the in-
dependent test set of 200 skills which encompassed a much larger diversity of
full-body movement than any previous study. Although this 95.5% recognition
rate was not as high as the 99.2% accuracy Starner and Pentland [66] achieved
recognizing 40 signs, a larger test sample of 200 skills were evaluated in this
chapter. With a larger training set, lower error rates are expected. General-
ization to a user independent system encompassing partial body movement
domains such as sign language should be attainable. To progress towards this
goal, the following improvements seem most important:

• Expand the dyneme model to improve discrimination of more subtle move-
ments in partial-body domains. This could be achieved by either expand-
ing the dyneme alphabet or having domain dependent dyneme alphabets
layered hierarchically below the full-body movement dynemes.
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• Expand the clone-body-model to include a complete hand-model for en-
abling even more subtle movement domains such as finger signing and to
better stabilize the hand position during tracking.

• Use a multi-camera or multi-modal vision system such as infra-red and
visual spectrum combinations to better disambiguate the body parts in
3D and track the body in 3D.

• More accurately calibrate all movement skills with multiple subjects per-
forming all skills on an accurate commercial tracking system recording
multiple camera angles to improve on depth of field ambiguities. Such cal-
ibration would also remedy the qualitative nature of tracking results from
computer vision research in general.

• Enhance tracking granularity using cameras with higher resolution, frame
rate and lux sensitivity.

So far movement domains with exclusively partial-body motion such as sign
language have been ignored. Incorporating partial-body movement domains
into the full-body skill recognition system is an interesting challenge. Can
the dyneme model simply be extended to incorporate a larger alphabet of
dynemes or is there a need for sub-domain dyneme models for maximum
discrimination within each domain? The answers to such questions may be the
key to developing a general purpose unconstrained skill recognition system.
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Summary. Presented is an algorithm for nonlinear dimensionality reduction that
uses both local(short) and global(long) distances in order to learn the intrinsic geom-
etry of manifolds with complicated topology. Since our algorithm matches nonlocal
structures, it is robust even to strong noise. We show experimental results on both
synthetic and real data demonstrating the advantages of our approach over state-
of-the-art manifold learning methods.

10.1 Introduction

Analysis of high-dimensional data is encountered in numerous pattern recog-
nition applications. It appears that often a small number of dimensions is
needed to explain the high-dimensional data. Dimensionality reduction meth-
ods such as principal components analysis (PCA) [15] and multidimensional
scaling (MDS) [5] are often used to obtain a low-dimensional representation of
the data. This is a commonly used pre-processing stage in pattern recognition.

While methods like PCA assume the existence of a linear map between
the data points and the parametrization space, such a map often does not
exist. Applying linear dimensionality reduction methods to nonlinear data
may result in a distorted representation. Nonlinear dimensionality reduction
(NLDR) methods attempt to describe a given high-dimensional data set of
points as a low-dimensional manifold, by a nonlinear map preserving certain
properties of the data. This kind of analysis has applications in numerous
fields, such as color perception, pathology tissue analysis [11], enhancement of
MRI images [13], face recognition [7], and biochemistry [24], to mention a few.
In the field of motion understanding, several methods use NLDR techniques
[22,29], including works presented in this book, see Chapter 2.

As the input data, we assume to be given N points in the M -dimensional
Euclidean space, {zi}N

i=1 ⊂ R
M . The points constitute vertices of a proximity

graph with the set of edges E; the points zi, zj are neighbors if (i, j) ∈ E.
The data points are samples of an m-dimensional manifold M ⊂ R

M , where
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M � m. The manifold is assumed to have a parametrization, represented by
the smooth bijective map ϕ : C ⊂ R

m → M.
The goal is to find a set of points {xi}N

i=1 ⊂ R
m representing the para-

metrization. We will use the N × m matrix X representing the coordinates
of the points in the parametrization space. Many NLDR techniques attempt
finding an m-dimensional representation for the data, while preserving some
local invariant. Another class of algorithms preserves global invariants, like
the geodesic distances dij , approximated as shortest paths on the proximity
graph.

The locally linear embedding (LLE) algorithm [30] expresses each point as
a linear combination of its neighbors,

zi =
∑

j:(i,j)∈E

wijzj ,

and minimizes the least-squares deviation from this local relation. This gives
rise to a minimal eigenvalue problem

X∗ = argmin
XT X=I

trace(XT MX),

where M is an N ×N sparse matrix with elements

mij =
{

1 − wij − wji +
∑

k wkiwkj i = j,
−wij − wji +

∑
k wkiwkj i �= j.

A similar approach is the Laplacian eigenmaps algorithm proposed by Belkin
and Niyogi in [1]. It solves the following minimum eigenvalue problem,

X∗ = argmin
XT DX=I
XT D1=0

trace(XT LX),

where 1 is an all-ones vector, and L is the Laplacian of the graph, an N ×N
sparse matrix with elements

lij =

⎧⎨⎩
wij (i, j) ∈ E and i = j,

−∑k �=i wki i = j,

0 else,

and D is a diagonal matrix with elements dii = −lii. The weights wij can
be selected, for example, as wij = exp{− 1

σ2 ‖xi − xj‖2
2}. The Laplacian L is

a discrete approximation of the Laplace–Beltrami operator and its eigenfunc-
tions are locally flat. This geometric interpretation is valid if the sampling of
the manifold is uniform.

The diffusion maps framework [11] tries to generalize the work of Belkin
and Niyogi and other local methods. Writing the quadratic expression in X
in a slightly different way,
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X∗ = argmin
X

m∑
k=1

N∑
i=1

ai(xk),

where xk is the kth column of X, one can think of ai(x) as of an operator,
applied coordinate-wise, and measuring the local variation of the result in the
neighborhood of the point xi, independently for each dimension. In general,
ai(x) can be defined to be an arbitrary quadratic positive semidefinite form
on the columns of X. For example, choosing ai(xk) to measure the Frobenius
norm of the Hessian of the kth coordinate of the result at the ith point, one
obtains the Hessian locally linear embedding (HLLE) algorithm [20]. Another
choice is the Laplace–Beltrami operator normalized with respect to the sam-
pling density. This choice gives rise to an algorithm acts locally on the graph
and provides a global coordinate system that mimics the diffusion distances
in the graph [27].

Semidefinite embedding [37] maximizes the variance in the data set while
keeping the local distances unchanged. The problem is formulated and solved
as a semidefinite programming (SDP) [2] problem, under constraints reflecting
invariance to translation and local isometry to Euclidean space,

X∗ = arg max
K0

trace(K) s.t.

⎧⎨⎩
∑

j kij = 0,
(i, j) ∈ E,
kii − kij − kji + kjj = δij ,

where kij = 〈xi,xj〉 are elements of the Gram matrix K, and δij are the geo-
desic distances. The second constraint preserves the local isometry property.
Yet, the computational cost of solving an SDP problem is O(N6) [2], which is
prohibitive even in medium-scale problems. Attempts to overcome it by using
landmarks [36] still incurs high computational complexity.

Tensor voting [28] is another local method, using a local voting mechanism
to estimate, in a robust way, the local data dimensionality. It can determine
the local dimensionality even for objects that have a spatially varying dimen-
sionality. Although this method does not recover a global parametrization of
the manifold, it may be used as a preprocessing stage for other algorithms.

Unlike local approaches, the Isomap algorithm [31,34] considers both local
and global invariants – the lengths of geodesics between the points on the
manifold. Short geodesics are assumed to be equal to Euclidean distances, and
longer ones are approximated as shortest path lengths on the proximity graph,
using standard graph search methods like the Dijkstra’s algorithm [12, 14].
Isomap then uses multidimensional scaling (MDS) [5] attempting to find an
m-dimensional Euclidean representation of the data, such that the Euclidean
distances between points are as close as possible to the corresponding geodesic
ones, for example, using the least squares criterion (referred to as stress),

X∗ = argmin
X∈RN×m

∑
i<j

wij (dij(X) − δij)
2
,
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where dij(X) = ‖xi − xj‖2 is the Euclidean distance between points xi and
xj in R

m.
The main advantage of Isomap is that it uses global geometric invariants,

which are less sensitive to noise compared to local ones. Yet, its underlying
assumption is that M is isometric to C ⊂ R

m with the induced metric dC , that
is, δ(zi, zj) = dRm(xi,xj) for all i, j = 1, ..., N . If C is convex, the restricted
metric dRm |C coincides with the induced metric dC and Isomap succeeds recov-
ering the parametrization of M. Otherwise, C has no longer Euclidean geom-
etry and MDS cannot be used. The assumption of convexity of C appears to
be too restrictive, as many data manifolds have complicated topology which
violates this assumption. Donoho and Grimes [19] showed examples of data
in which C is nonconvex, and pointed out that Isomap fails in such cases.

Here, we suggest a solution based on removing pairs of points inconsistent
with the convexity assumption. Our approach, hereinafter referred to as the
topologically constrained isometric embedding (TCIE), allows handling data
manifolds of arbitrary topology. In Section 10.2, we introduce a new algorithm
for that goal, and prove that it rejects inconsistent geodesics. Section 10.3
discusses the numerical implementation of the algorithm and suggests ways
to speed up its convergence. In Section 10.4 we demonstrate our approach on
real and synthetic data.

10.2 Topologically Constrained Isometric Embedding

As we mentioned, the Isomap algorithm assumes that the parametrization C
of M is a convex subset of R

m, and relies on the isometry assumption to find
the map from M to the metric space (C, dC) by means of MDS (the stress in
the solution will be zero). MDS can be used because dC = dRm |C due to the
convexity assumption. In the case when C is nonconvex, this is not necessarily
true, as there may exist pairs of points for which dC �= dRm |C . We call such
pairs inconsistent. An example of such a pair is shown in Figure 10.1. We
denote the set of all consistent pairs by

Fig. 10.1. Example of inconsistent x1 and x2, for which the line connecting them
in R

m (dashed line) is shorter than the geodesic gC(x1,x2) (dotted curve).
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P = {(i, j) : dC(xi,xj) = dRm |C(xi,xj)} ⊆ I × I.

In the TCIE algorithm, we find a subset P̄ ⊆ P of pairs of points that will
be consistently used in the MDS problem. The algorithm goes as follows:

We now describe the main stages of the algorithm:

Detection of Boundary Points

Step 2 in our algorithm is the detection of boundary points. There exist many
algorithms that detect boundaries in point clouds, see, e.g. [6, 21]. For two-
dimensional manifolds, we use the following heuristic that worked well even
for relatively sparsely sampled manifolds. Essentially, our method assumes the
point i and its two opposite neighbors, j, k, to be a part of a curve along the
boundary. It then tries to find points that are placed outside of this boundary
on both sides of it, violating the conjecture. This idea can be extended for
m > 2 as well, in the following way:

The second method assumes an isotropic distribution of points in the
neighborhood reconstructed by MDS and seems to work well in practice for
three-dimensional manifolds. Directions in this method are selected according
to neighboring points, avoiding the need to artificially determine the normal
direction.

Besides the proposed heuristics, other boundary detection algorithms can
be used [18,28]. In practice, if the intrinsic dimension of the manifold is large,
many samples are required for boundary detection.
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Detection of Inconsistent Geodesics

The first consistency criterion requires to check whether geodesics touch the
boundary. Once we have detected the boundary points, we use a modification
of the Dijkstra algorithm [12, 14], in the following manner: while extending
the shortest path from source i to point j, towards point j’s neighbors: for
each neighbor k of point j, check if the currently known shortest path from i
to point k is longer than the route through j. If so, update the path length to
the shorter path, as is done in the Dijkstra algorithm, but in addition, mark
the newly updated path as an inconsistent if either (i) the path from i to j is
a path marked to be removed, or (ii) j is a boundary point, and the path from
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i to k through j travels through more than one point. The second condition
protects paths with a boundary end point from being removed. This way we
eliminate only geodesics that do not end at the boundary but rather touch it
and continue their journey. Removal is done after the path length calculation
by assigning zero weight to the measured distance. Similar modifications can
be made to the Bellman–Ford and Floyd algorithms, or other algorithms [25].
We note that for the second criterion, detection of inconsistent geodesic is
trivially done by looking at the geodesic distances.

SMACOF Algorithm

A way to include only consistent point pairs is to use weighted stress,

X∗ = argmin
X

∑
i=0,i<j

wij(dij(X) − δij)2,

where wij = 1 if (i, j) ∈ P̄ , P̄ can be set according to either the first criterion
or the second critterion, and wij = 0 otherwise. This allows us, by choosing
the right weights, to minimize the error only for consistent geodesics.

The geodesics that were not marked as inconsistent during the Dijkstra
algorithm have their weight set to one. We also allow a positive weight for
short geodesics, in order to keep the connectivity of the manifold as a graph,
even at boundary points. All other geodesics have their weight set to zero. We
then use the SMACOF algorithm [5] to minimize the weighted stress.

We note that the correctness of these conditions depends on the assump-
tion that our manifold is isometric to a subregion of an Euclidean space,
similarly to the underlying assumption of Isomap.

10.2.1 Theoretical Analysis

In this section we discuss a continuous case, in which the manifold is sampled
with non-zero density. We assume the same assumptions on sampling density
and uniformity made by Bernstein et al. [3], who proved the convergence of the
graph distances approximation, used by the Isomap algorithm, to the geodesic
distances on the manifold. Also note that the requirement of a positive density
function prevents problems that may occur in geodesics approximated by a
graph when the surface is sampled in a specific regular pattern. In our case,
there is also the question of whether or not we remove too many geodesics.
The answer is related to the topology of the manifold.

In the continuous case, our algorithm approximates an isometry between
M with the geodesic metric δ and C ⊂ R

m with the induced metric dC . Our cri-
teria always select consistent distances, as shown in the following propositions:
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Proposition 1 P̄1 = {(i, j) : c(zi, zj) ∩ ∂M = ∅} ⊆ P .

Proof. Let (i, j) ∈ P̄1. To prove the proposition, it is sufficient to show that the
pair of points (i, j) is consistent, i.e., (i, j) ∈ P . Let cM(z1, z2) be the geodesic
connecting zi and zj in M, and let cC(x1,x2) be its image under ϕ−1 in C.
Since c(zi, zj) ∩ ∂M = ∅ and because of the isometry, cC(xi,xj) ⊂ int(C).

Assume that (i, j) is inconsistent. This implies that dC(xi,xj)>
dRm(xi,xj), i.e., that the geodesic cC(xi,xj) is not a straight line. Therefore,
there exists a point x ∈ cC(xi,xj), in whose proximity cC(xi,xj) is not a
straight line. Since cC(xi,xj) ⊂ int(C), there exists a ball Bε(x) with the
Euclidean metric dRm around x of radius ε > 0. Let us take two points on
the segment of the geodesic within the ball, x′,x′′ ∈ cC(xi,xj) ∩ Bε(x). The
geodesic cC(x′,x′′) coincides with the segment of cC(xi,xj) between x′,x′′.
Yet, this segment is not a straight line, therefore we can shorten the geodesic
by replacing this segment with cRm(x′,x′′), in contradiction to the fact that
cC(xi,xj) is a geodesic. Therefore, (i, j) ∈ P . ��

Therefore, for every geodesic in M which was not detected as touching the
boundary, the image under ϕ−1 is a line, which is approximated correctly by
the MDS procedure. In the more general case, where (M, dM) is not isometric
to a subregion of Euclidean space, the second criterion we have presented
ensures that if the manifold is isometric to a subregion C of a space C′ with
Riemannian metric, we only use geodesics for which the induced and the
restricted metric identify.

Assume we have a pair of points for which the induced and the restricted
metric on C are not the same. Therefore, the geodesic in C′ must cross the
boundary of C, resulting in the inequality

dC′(x1,x2) > dC(x1, ∂C) + dC(x2, ∂C).

Using the second criterion, replacing the right-hand side we have

dC′(x1,x2) > dC(x1,x2).

Resulting in a contradiction to the definition of induced metric.
Note that for a parametrization manifold C′ with an arbitrary Riemannian

metric, the MDS procedure would not be able to give us the correct mapping.
This would require the use of another procedure, as is done in [8]. The second
criterion may be of use in cases where the metric on C′ is close to Euclidean,
and yet we only want to use geodesics which stay in C.

10.2.2 Complexity Analysis

The algorithm involves several computationally demanding procedures,

• Boundary detection – O(N2).
• Distance computation – O(N2 logN).
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• Stress minimization – O(N2) per iteration. While the number of SMACOF
iterations is not invariant to the number of samples, in practice it rises
slowly, depending on the topology of the manifold and the noise level.

10.3 Implementation Considerations

For determining the shortest paths we used the Dijkstra algorithm implemen-
tation supplied by Tenenbaum, et al. [34], for the Isomap code. We added the
detection of geodesics touching boundary points. The rest of the algorithm was
implemented in MATLAB. In practice, the Dijkstra algorithm takes less than
10% of the total running time for 2000 points. Solving the MDS optimization
problem consumes most of the time.

10.3.1 Numerical Properties and Convergence

The optimization problem solved is a nonconvex one, and as such is liable
to local convergence if convex optimization methods are employed [35]. In
our experiments, we have seen that removing more distances from the stress
function caused the problem to be more sensitive to local minima. An example
of one such local minimum, encountered when flattening the Swiss-role with
a hole example, is shown in Figure 10.2. It appears as a fold over, or “flip”.
In general, the number of remaining weights depends on the surface topology,
as well as the number of sampled points in the surface.1

We reduce the risk of convergence to a local minimum by starting from
a classical scaling (as mentioned by Trosset et al. [23]) or unweighted least-
squares scaling solution. This allows the algorithm to avoid some of the local
minima. Although the solutions found by classical scaling and least square
scaling may differ, under the assumption of correct distance approximation,
the solutions are similar.

Using the unweighted LS-MDS problem to avoid local minima, and then
gradually changing the problem solved into the weighted one is in the flavor
of graduated non-convexity [4], although the problem remains nonconvex.

Fig. 10.2. Example of a local minimizer of the weighted MDS problem. Ripples
along the boundaries of the rectangle are marked with arrows.

1 Typically, in our experiments W contained between 6% to 18% nonzero weights.
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10.3.2 Convergence Acceleration by Vector Extrapolation
Methods

To speed up the convergence of the SMACOF iterations, we employ vector
extrapolation. These methods use a sequence of solutions at subsequent it-
erations of the optimization algorithm and extrapolate the limit solution of
the sequence. While these algorithms were derived assuming a linear iterative
scheme, in practice, they work well also for nonlinear schemes, such as some
processes in computational fluid dynamics [32]. For further details, we refer
to [10,16,33].

The main idea of vector extrapolation is, given a sequence of solutions
X(k) from iterations k = 0, 1, ..., to approximate the limit limk→∞ X(k), which
should coincide with the optimal solution X∗. The extrapolation X̂(k) is con-
structed as an affine combination of last K + 1 iterates, X(k), ...,X(k+K)

X̂(k) =
K∑

j=0

γjX(k+j);
K∑

j=0

γj = 1.

The coefficients γj can be determined in various ways. In the reduced rank
extrapolation (RRE) method, γj are obtained by the solution of the mini-
mization problem,

min
γ0,..,γK

∥∥∥∥∥∥
K∑

j=0

γjΔX(k+j)

∥∥∥∥∥∥ , s.t.
K∑

j=0

γj = 1,

where ΔX(k) = X(k+1) − X(k). In the minimal polynomial extrapolation
(MPE) method,

γj =
cj∑K
i=0 ci

, j = 0, 1, ...,K,

where ci arise from the solution of the minimization problem,

min
c0,..,cK−1

∥∥∥∥∥∥
K∑

j=0

cjΔX(k+j)

∥∥∥∥∥∥ , cK = 1,

which in turn can be formulated as a linear system [33].

10.3.3 Convergence Acceleration by Multiscale Optimization

Another way to accelerate the solution of the MDS problem is using multires-
olution (MR) methods [9]. The main idea is subsequently approximating the
solution by solving the MDS problem at different resolution levels. At each
level, we work with a grid consisting of points with indices ΩL ⊂ ΩL−1 ⊂ ... ⊂
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Ω0 = {1, ..., N}, such that |Ωl| = Nl. At the lth level, the data is represented
as an Nl × Nl matrix Δl, obtained by extracting the rows and columns of
Δ0 = Δ, corresponding to the indices Ωl. The solution X∗

l of the MDS prob-
lem on the lth level is transferred to the next level l−1 using an interpolation
operator P l−1

l , which can be represented as an Nl−1 ×Nl matrix.

We use a modification of the farthest point sampling (FPS) [17] strategy
to construct the grids, in which we add more points from the boundaries, to
allow correct interpolation of the fine grid using the coarse grid elements. We
use linear interpolation with weights determined using a least squares fitting
problem with regularization made to ensure all available nearest neighbors are
used.

The multiresolution scheme can be combined with vector extrapolation by
employing MPE or RRE methods at each resolution level. In our experiments
we used the RRE method, although in practice, for the SMACOF algorithm,
both the MPE and the RRE algorithms gave comparable results, giving us a
threefold speedup. A comparison of the convergence with and without vector
extrapolation and multiresolution methods is shown in Figure 10.3. The stress
values shown are taken from the problem shown in Figure 10.6. Major spikes
in the stress function of the appropriate method’s graph indicate a change in
the resolution level with inaccurate interpolation.

10.4 Results

We tested our algorithm on the Swiss roll surface with a large rectangular hole,
sampled at 1200 points. Flattening was performed for points sampled on the
manifold with additive independently identically distributed Gaussian noise in
each coordinate of each point. The various instances of the surface with noise
are shown in Figure 10.4. We compare the proposed algorithm to Isomap,
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Fig. 10.3. Convergence (in terms of stress value) of basic SMACOF (dotted), SMA-
COF with multiresolution acceleration (solid), SMACOF with RRE (dash-dotted)
and SMACOF with both RRE and multiscale (dashed), in terms of CPU time and
MFLOPS. CPU time is approximated. Convergence was stopped at the same relative
change of stress value.

Original Swiss-roll σ = 0.015 σ = 0.05

Fig. 10.4. Left to right: Swiss roll surface without noise, and contaminated by
Gaussian noise with σ = 0.015 and σ = 0.05, and the spiral surface. Detected
boundary points are shown in red.
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Fig. 10.5. The planar surface cut as a spiral. Detected boundary points are shown
in red.

LLE, Laplacian eigenmaps, diffusion maps and Hessian LLE, in Figures 10.6–
10.82. Our algorithm finds a representation of the manifold, with relatively
small distortion. Adding i.i.d. Gaussian noise to the coordinates of the sampled
points, our method remains accurate compared to other popular algorithms
that exhibit large distortions. This can be seen, for example, for 1200 points,
with σ = 0.05, in Figure 10.8, where for comparison, diam(M) ≈ 6. The
algorithm was allowed to converge until the relative change in the weighted
stress was below some threshold. Tests with higher noise levels were also
performed and the performance boosting due to the RRE method is quite
consistent. Using multiscale further reduces the computational cost of the
solution, by a factor of 2, for the problem shown in the example. We note
that the speedup depends on both the manifold topology and the problem
size, among other factors, but such a reduction in computational effort is
typical for all the problems we have tested.

We also tested our algorithm on a planar patch cut in the form of a spiral.
Ideally, a correct solution can be achieved by linear methods such as PCA on
the embedding space coordinates, and the large number of geodesics removed
(only 6% of the geodesic distances remained) makes a worst case scenario

2 We used the same number of neighboring points (12) in all algorithms, except
for the diffusion maps algorithm, where we used value of the diffusion distance
constant according to

σ2 =
2

N

N∑
i=0

min
j

‖xi − xj‖2.

This is the same rule used by Lafon ([26], p. 33) up to a constant. The larger
diffusion distance gave us more robust results. More specifically, the values of ε
we used in the noiseless example and with σ = 0.015, σ = 0.05 were 3.897×10−3,
3.998 × 10−3 and 8.821 × 10−3 respectively.

As for α, the parameter used by Lafon et al. [11] to specify various types of
diffusion maps, we show here the results for α = 1, though other values of α were
also tested.
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Locally Linear Embedding Laplacian Eigenmaps Hessian LLE

Diffusion maps Isomap TCIE

Fig. 10.6. Embedding of the swiss roll (without noise), as produced by LLE, Lapla-
cian eigenmaps, Hessian LLE, diffusion maps, Isomap, and our algorithm. Detected
boundary points are shown as red pluses.

for our algorithm. In practice, as Figure 10.9 shows, the proposed algorithm
introduces just a minor distortion whereas other algorithms fail to extract the
structure of the manifold.

Although in practical cases the data manifold is not necessarily isometric to
a subregion of a low-dimensional Euclidean space, our algorithm appears to be
able to produce meaningful results in image analysis applications. Figure 10.10
demonstrates the recovery of gaze direction of a person from a sequence of
gray-scale images. Assuming that facial pose and expressions do not change
significantly, images of the area of the eyes form a manifold approximately
parameterized by the direction of the gaze. Similar to previous image manifold
experiments [34], we use Euclidean distances between the row-stacked images
as the distance measure. In order to reduce the effect of head movement,
simple block matching was used.
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Locally Linear Embedding Laplacian Eigenmaps Hessian LLE

Diffusion maps Isomap TCIE

Fig. 10.7. Embedding of the swiss roll contaminated by Gaussian noise with σ =
0.015, as produced by LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps,
Isomap, and our algorithm. Detected boundary points are shown as red pluses.

10.5 Conclusions

We presented a new global method for nonlinear dimensionality reduction.
We showed that using a careful selection of geodesics we can, robustly, flatten
non-convex manifolds. Since the proposed method uses global information it is
less sensitive to noise than local ones, as shown in the examples. In addition, in
order to allow the algorithm to run at the same time scale as local methods, we
show how vector extrapolation methods such as MPE and RRE can be used
to accelerate the solution of nonlinear dimensionality reduction problems.

In future work we consider extending our results to non-Euclidean spaces.
We would like to improve its computational efficiency using multigrid [9] meth-
ods. We plan to introduce a version of the algorithm which is more robust to
changes in the sampling density of the manifold. It is similar in spirit to con-
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Locally Linear Embedding Laplacian Eigenmaps Hessian LLE

Diffusion maps Isomap TCIE

Fig. 10.8. Embedding of a 2D manifold contaminated by Gaussian noise with
σ = 0.05, as produced by LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps,
Isomap, and our algorithm. Detected boundary points are shown as red pluses.

cepts introduced in the Laplacian eigenmaps algorithm [11]. Furthermore, the
boundary detection algorithms that play a key role in the elimination process
will be further explored. Finally, we note that the main limitation of the pro-
posed algorithm is its memory complexity, and we are currently searching for
ways to reduce this limitation.
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Locally Linear Embedding Laplacian Eigenmaps Hessian LLE

Diffusion maps Isomap TCIE

Fig. 10.9. Embedding of a 2D manifold in the shape of a flat spiral, as produced by
LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps, Isomap, and our algorithm.
Detected boundary points are shown as red pluses.

Fig. 10.10. The intrinsic coordinates of the image manifold of the eyes area with
different gaze directions, as mapped by our algorithm.
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Summary. Human 3D motion tracking from video is an emerging research field
with many applications demanding highly detailed results. This chapter surveys a
high quality generative method, which employs the person’s silhouette extracted
from one or multiple camera views for fitting an a priori given 3D body surface
model. A coupling between pose estimation and contour extraction allows for reliable
tracking in cluttered scenes without the need of a static background. The optic flow
computed between two successive frames is used for pose prediction. It improves the
quality of tracking in case of fast motion and/or low frame rates. In order to cope
with unreliable or insufficient data, the framework is further extended by the use of
prior knowledge on static joint angle configurations.

11.1 Introduction

Tracking of humans in videos is a popular research field with numerous
applications ranging from automated surveillance to sports movement analy-
sis. Depending on applications and the quality of video data, there are different
approaches with different objectives. In many people tracking methods, for in-
stance, only the position of a person in the image or a region of interest is
sought. Extracting more detailed information is often either not necessary or
very difficult due to image resolution.

In contrast to such model-free tracking methods, the present chapter is
concerned with the detailed fitting of a given 3D model to video data. The
model consists of the body surface and a skeleton that contains predefined
joints [8, 26]. Given the video data from one or more calibrated cameras,
one is interested in estimating the person’s 3D pose and the joint angles.
This way, the tracking becomes an extended 2D–3D pose estimation problem,
where additionally to the person’s rigid body motion one is interested in some
restricted kind of deformation, namely the motion of limbs.
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Applications of this kind of tracking are sports movement and clinical
analysis, as well as the recording of motion patterns for animations in com-
puter graphics. The state-of-the-art for capturing human motion is currently
defined by large industrial motion capture systems with often more than 20
cameras. These systems make use of markers attached to the person’s body
in order to allow for a fast and reliable image processing. Often the reliability
of the results is further improved by manually controlling the matching of
markers. Such systems are described in Chapter 16.

While results of marker-based motion capturing systems are very trust-
worthy, markers need to be attached, which is sometimes not convenient.
Moreover the manual supervision of marker matching can be very laborious.
For these reasons, one is interested in marker-less motion capturing, using the
appearance of the person as a natural marker.

While markers in marker-based systems have been designed for being easy
to identify, finding correct correspondences of points in marker-free systems is
not as simple. A sensible selection of the right feature to be tracked is impor-
tant. A typical way to establish point correspondences is to concentrate on
distinctive patches in the image and to track these patches, for instance, with
the KLT tracker [56] or a tracker based on the so-called SIFT descriptor [37].
However, patch-based tracking typically only works reliably if the appearance
of the person contains sufficiently textured areas.

An alternative feature, particularly for tracking people with non-textured
clothing, is the silhouette of the person. Early approaches have been based on
edge detectors and have tried to fit the 3D model to dominant edges [26]. Since
image edges are not solely due to the person’s silhouette, the most relevant
problem of such approaches is their tendency to get stuck in local optima.
Sophisticated optimization techniques have been suggested in order to atten-
uate this problem [62]. Nowadays, silhouette based tracking usually relies on
background subtraction. Assuming both a static camera and a static back-
ground, the difference between the current image and the background image
efficiently yields the foreground region. Apart from the restrictive assump-
tions, this approach works very well and is frequently employed for human
tracking [1, 25,60].

In [53] a contour-based method to 3D pose tracking has been suggested
that does not impose such strict assumptions on the scene. Instead, it demands
dissimilarity of the foreground and background region, which is a typical as-
sumption in image segmentation. In order to deal with realistic scenarios where
persons may also wear nonuniform cloths and the background is cluttered, the
dissimilarity is defined in a texture feature space, and instead of homogeneous
regions, the model expects only locally homogeneous regions. The main differ-
ence to other pose tracking methods, however, is the coupling between feature
extraction and estimation of the pose parameters. In a joint optimization one
seeks the pose parameters that lead to the best fit of the contour in the image.
Vice versa, one seeks a segmentation that fits the image data and resembles
the projected surface model. Due to this coupling, the contour extraction is
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Frame k

Segmentation (Section 3.1, 3.2)
region statistics, contour

Pose estimation (Section 3.3)
pose parameters 

Initial pose

Model projection Motion prediction
with optic flow

(Section 4)

Initial pose for
next frame+

Prior density
on poses

(Section 5)

Shape matching

Fig. 11.1. System overview: the core is the coupled contour extraction and pose
estimation. The motion between frames is predicted by optic flow in order to ensure
a close initialization in the next frame. Pose configurations are constrained by a
prior density estimated from training samples.

much more reliable than in a conventional two-step approach, where the con-
tour is computed independently from the pose estimation task. We will survey
the method in Section 11.3.

Although this way of integrating contours into pose estimation is more
robust than the edge-based approach, it is still a local optimization method
that can get stuck in local optima in case of fast motion. To alleviate these
effects, it is common practice in tracking to predict the pose of the tracked
object in the coming frame. A prediction is usually computed by simply ex-
trapolating the motion between the last two frames to the next frame. In a
more subtle way, learning based approaches incorporate auto-regressive mod-
els or nonlinear subspace methods based on training sequences to accomplish
this task [1, 17,25,57,65].

Another possibility to predict the pose parameters in the next frame is
by the optic flow. Optic flow based tracking is similar to patch-based track-
ing, though instead of patches one tries to match single points under certain
smoothness assumptions. With a reliable optic flow estimation method, one
can predict rather large displacements [10]. In combination with the contour-
based method, one obtains a system that can handle fast motions and is free
from error accumulation, which is a severe problem for optic flow or patch-
based tracking. A similar concept has been presented earlier in [21] and [38] in
combination with edges instead of contours and different optic flow estimation
techniques. The pose prediction by means of optic flow and how the flow can
be efficiently computed is explained in Section 11.4.

Since 3D human tracking is generally an ill-posed problem with many
solutions explaining the same data, methods suffer enormously from unreliable
data. Therefore, in recent years, it has become more and more popular to
exploit prior assumptions about typical human poses and motion patterns
[11, 59, 65]. In Section 11.5 it will be described how the tracking model can
be constrained to prefer solutions that are close to familiar poses. The impact
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of such a constraint regarding the robustness of the technique to disturbed
image data is remarkable. See also Chapters 2 and 8 for learning techniques
in human tracking.

Although the tracking system described in this chapter comprises many
advanced methods, there is still much room for extensions or alternative
approaches. In Section 11.6 we discuss issues such as running times, auto-
initialization, dynamical pose priors, and cloth tracking including cursors to
other chapters in this book or to seminal works in the literature. A brief
summary of the chapter is given in Section 11.7.

11.2 Human Motion Representation with Twists
and Kinematic Chains

A human body can be modeled quite well by means of a kinematic chain. A
kinematic chain is a set of (usually rigid) bodies interconnected by joints. For
example, an arm consists of an upper and lower arm segment and a hand,
with the shoulders, elbow and wrist as interconnecting joints. For a proper
representation of joints and transformations along kinematic chains in the
human tracking method, we use the exponential representation of rigid body
motions [42], as suggested in [7, 8].

Every 3D rigid motion can be represented in exponential form

M = exp(θξ̂) = exp
(

ω̂ v
03×1 0

)
(11.1)

where θξ̂ is the matrix representation of a twist ξ ∈ se(3) = {(v, ω̂)|v ∈
R

3, ω̂ ∈ so(3)}, with so(3) = {A ∈ R
3×3|A = −AT }. The Lie algebra so(3) is

the tangential space of the 3D rotations at the origin. Its elements are (scaled)
rotation axes, which can either be represented as a 3D vector

θω = θ

⎛⎝ω1

ω2

ω3

⎞⎠ , with ‖ω‖2 = 1 (11.2)

or as a skew symmetric matrix

θω̂ = θ

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ . (11.3)

In fact, M is an element of the Lie group SE(3), known as the group
of direct affine isometries. A main result of Lie theory is that to each Lie
group there exists a Lie algebra which can be found in its tangential space by
derivation and evaluation at its origin. Elements of the Lie algebra therefore
correspond to infinitesimal group transformations. See [42] for more details.
The corresponding Lie algebra to SE(3) is denoted as se(3).
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A twist contains six parameters and can be scaled to θξ with a unit vector
ω. The parameter θ ∈ R corresponds to the motion velocity (i.e., the rotation
velocity and pitch). The one-parameter subgroup Φξ̂(θ) = exp(θξ̂) generated
by this twist corresponds to a screw motion around an axis in space. The six
twist components can either be represented as a 6D vector

θξ = θ(ω1, ω2, ω3, v1, v2, v3)T

with ‖ω‖2 = ‖(ω1, ω2, ω3)T ‖2 = 1, (11.4)

or as a 4 × 4 matrix

θξ̂ = θ

⎛⎜⎜⎝
0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

⎞⎟⎟⎠ . (11.5)

To reconstruct a group action M ∈ SE(3) from a given twist, the exponential
function exp(θξ̂) =

∑∞
k=0

(θξ̂)k

k! = M ∈ SE(3) must be computed. This can
be done efficiently by using the Rodriguez formula [42].

In this framework, joints are expressed as special screws with no pitch.
They have the form θj ξ̂j with known ξ̂j (the location of the rotation axes as
part of the model representation) and unknown joint angle θj . A point on the
jth joint can be represented as consecutive evaluation of exponential functions
of all involved joints,

X ′
i = exp(θξ̂RBM )(exp(θ1ξ̂1) . . . exp(θj ξ̂j)Xi) (11.6)

The human body motion is then defined by a parameter vector ξ :=
(ξRBM , Θ) that consists of the 6 parameters for the global twist ξRBM (3D
rotation and translation) and the joint angles Θ := (θ1, . . . , θN ).

11.3 Contour-based Pose Estimation

In this section, we survey the coupled extraction of the contour and the es-
timation of the pose parameters by means of this contour. For better under-
standing we start in Section 11.3.1 with the simple segmentation case that is
not yet related to the pose parameters. In the end, the idea is to find pose
parameters in such a way that the projected surface leads to a region that
is homogeneous according to a certain statistical model. The statical region
model will be explained and motivated in Section 11.3.2. In Section 11.3.3
we then bend the bow to pose estimation by introducing the human model as
a 3D shape prior into the segmentation functional. This leads to a matching of
2D shapes. From the point correspondences of this matching, one can derive
2D–3D correspondences and finally estimate the pose parameters from these.
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11.3.1 Contour Extraction with Level Sets

Level set representation of contours: The contour extraction is based on
variational image segmentation with level sets [23, 44], in particular region-
based active contours [15, 20, 46, 64]. Level set formulations of the image seg-
mentation problem have several advantages. One is the convenient embedding
of a 1D curve into a 2D, image-like structure. This allows for a convenient and
sound interaction between constraints that are imposed on the contour itself
and constraints that act on the regions separated by the contour. Moreover,
the level set representation yields the inherent capability to model topological
changes. This can be an important issue, for instance, when the person is
partially occluded and the region is hence split into two parts, or if the pose
of legs or arms leads to topological changes of the background.

In the prominent case of a segmentation into foreground and background,
a level set function Φ ∈ Ω �→ R splits the image domain Ω into two regions Ω1

and Ω2, with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if x ∈ Ω2. The zero-level line
thus marks the boundary between both regions, i.e., it represents the person’s
silhouette that is sought to be extracted.

Optimality criteria and corresponding energy functional: As optimal-
ity criteria for the contour we want the data within one region to be similar
and the length of the contour to be as small as possible. Later in Section 11.3.3
we will add similarity to the projected surface model as a further criterion. The
model assumptions can be expressed by the following energy functional [15,66]:

E(Φ) = −
∫

Ω

(
H(Φ) log p1 + (1 −H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx(11.7)

where ν > 0 is parameter that weights the similarity against the length con-
straint, and H(s) is a regularized Heaviside function with lims→−∞ H(s) = 0,
lims→∞ H(s) = 1, and H(0) = 0.5. It indicates to which region a pixel be-
longs. Chan and Vese suggested two alternative functions in [15]. The par-
ticular choice of H is not decisive. We use the error function, which has the
convenient property that its derivative is the Gaussian function.

Minimizing the first two terms in (11.7) maximizes the likelihood given
the probability densities p1 and p2 of values in Ω1 and Ω2, respectively. The
third term penalizes the length of the contour, what can be interpreted as a
log-prior on the contour preferring smooth contours. Therefore, minimizing
(11.7) maximizes the total a-posteriori probability of all pixel assignments.

Minimization by gradient descent: For energy minimization one can
apply a gradient descent. The Euler–Lagrange equation (11.7) leads to the
following update equation1:
1 As the probability densities in general also depend on the contour there may

appear additional terms depending on the statistical model. For global Gaussian
densities, however, the terms are zero, and for other models they have very little
influence on the result, so they are usually neglected.
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∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν∇�

( ∇Φ

|∇Φ|

))
(11.8)

where H ′(s) is the derivative of H(s) with respect to its argument. Applying
this evolution equation to some initialization Φ0, and given the probability
densities pi, which are defined in the next section, the contour converges to
the next local minimum for the numerical evolution parameter t → ∞.

11.3.2 Statistical Region Models

An important factor for the contour extraction process is how the probability
densities pi : R → [0, 1] are modeled. This model determines what is consid-
ered similar or dissimilar. There is on one hand the choice of the feature space,
e.g. gray value, RGB, texture, etc., and on the other hand the parametrization
of the probability density function.

Texture features: Since uniformly colored cloths without texture are in gen-
eral not realistic, we adopt the texture feature space proposed in [12]. It com-
prises M = 5 feature channels Ij for gray scale images, and M = 7 channels
if color is available. The color channels are considered in the CIELAB color
space. Additionally to gray value and color, the texture features in [12] en-
code the texture magnitude, orientation, and scale, i.e., they provide basically
the same information as the frequently used responses of Gabor filters [24].
However, the representation is less redundant, so 4 feature channels substitute
12–64 Gabor responses. Alternatively, Gabor features can be used at the cost
of larger computation times. In case of people wearing uniform cloths and the
background also being more or less homogeneous, one can also work merely
with the gray value or color in order to increase computation speed.

Channel independence: The probability densities of the M feature channels
are assumed to be independent, thus the total probability density can be
composed of the densities of the separate channels:

pi =
M∏

j=1

pij(Ij) i = 1, 2. (11.9)

Though assuming channel independence is merely an approximation, it keeps
the density model tractable. This is important, as the densities have to be
estimated from a limited amount of image data.

Density models of increasing complexity: There are various possibilities
how to model channel densities. In [15] a simple piecewise constant region
model is suggested, which corresponds to a Gaussian density with fixed stan-
dard deviation. In order to admit different variations in the regions, it is
advisable to use at least a full Gaussian density [66], a generalized Lapla-
cian [28], or a Parzen estimate [32, 54]. While more complex density models
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can represent more general distributions, they also imply the estimation of
more parameters which generally leads to a more complex objective function.

Local densities: Nevertheless, for the task of human tracking, we advocate
the use of a more complex region model, in particular a Gaussian density
that is estimated using only values in a local neighborhood of a point instead
of values from the whole region. Consequently, the probability density is no
longer fixed for one region but varies with the position. Local densities have
been proposed in [31, 53]. Segmentation with such densities has been shown
to be closely related to the piecewise smooth Mumford–Shah model [13, 41].
Formally, the density is modeled as

pij(s, x) =
1√

2πσij(x)
exp
(

(s− μij(x))2

2σij(x)2

)
. (11.10)

The parameters μij(x) and σij(x) are computed in a local Gaussian neighbor-
hood Kρ around x by:

μij(x)=

∫
Ωi

Kρ(ζ − x)Ij(ζ) dζ∫
Ωi

Kρ(ζ − x) dζ
σij(x)=

∫
Ωi

Kρ(ζ − x)(Ij(ζ) − μij(x))2 dζ∫
Ωi

Kρ(ζ − x) dζ
(11.11)

where ρ denotes the standard deviation of the Gaussian window. In order to
have enough data to obtain reliable estimates for the parameters μij(x) and
σij(x), we choose ρ = 12.

Taking advantage of local dissimilarity of foreground and back-
ground: The idea behind the local density model is the following: in realistic
scenarios, the foreground and background regions are rarely globally dissim-
ilar. For instance, the head may have a different color than the shirt or the
trousers. If the same colors also appear in the background, it is impossible
to accurately distinguish foreground and background by means of a standard
global region distribution. Locally, however, foreground and background can
be easily distinguished. Although the local density model is too complex to
detect the desired contour in an image without a good contour initialization
and further restrictions on the contour’s shape, we are in a tracking scenario,
i.e., the result from the previous frame always provides a rather good ini-
tialization. Moreover, in the next section a shape constraint is imposed on
the contour that keeps it close to the projection of the surface model. Also
note, that we still have a statistical region based model, which yields con-
siderably less local optima than previous edge-based techniques. The results
in Figure 11.2 and Figure 11.4 show that local region statistics provide more
accurate contours and thus allow for a more reliable estimate of the 3D pose.

Optimization with EM: Estimating both the probability densities pij and
the region contour works according to the expectation-maximization principle
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Fig. 11.2. Human pose estimation with the coupled contour-based approach given
two camera views. First row: Initialization of the pose. The projection to the images
is used as contour initialization. Second row: Estimated contour after 5 iterations.
Third row: Estimated pose after 5 iterations.

[22,39]. Having the level set function initialized with some partitioning Φ0, the
probability densities in these regions can be approximated. With the proba-
bility densities, on the other hand, one can compute an update on the contour
according to (11.8), leading to a further update of the probability densities,
and so on. In order to attenuate the dependency on the initialization, one can
apply a continuation method in a coarse-to-fine manner [6].
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11.3.3 Coupled Estimation of Contour and Pose Parameters

Bayesian inference: So far, only the person’s silhouette in the image has
been estimated, yet actually we are interested in the person’s pose parameters.
They can be estimated from the contour in the image, but also vice versa the
surface model with given pose parameters can help to determine this contour.
In a Bayesian setting this joint estimation problem can be written as the
maximization of

p(Φ, ξ|I) =
p(I|Φ, ξ)p(Φ|ξ)p(ξ)

p(I)
(11.12)

where Φ indicates the contour given as a level set function, ξ the set of pose
parameters, and I the given image(s). This formula imposes a shape prior on
Φ given the pose parameters, and it imposes a prior on the pose parameters.
For the moment we will use a uniform prior for p(ξ), effectively ignoring this
factor, but we will come back to this prior later in Section 11.5.

Joint energy minimization problem: Assuming that the appearance in
the image is completely determined by the contour with no further (hidden)
dependence on ξ, we can set p(I|Φ, ξ) ≡ p(I|Φ). Minimizing the negative
logarithm of (11.12) then leads to the following energy minimization problem:

E(Φ, θξ) = − log p(Φ, ξ|I)

= −
∫

Ω

(
H(Φ) log p1 + (1 −H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx

+ λ

∫
Ω

(Φ− Φ0(ξ))2 dx︸ ︷︷ ︸
Shape

+ const. (11.13)

One recognizes the energy from (11.7) with an additional term that imposes
the shape constraint on the contour and relates at the same time the contour
to the sought pose parameters. The parameter λ ≥ 0 introduced here deter-
mines the variability of the estimated contour Φ from the projected surface
model Φ0. Φ0 is again a level set function and it is obtained by projecting the
surface to the image plane (by means of the known projection matrice) and
by applying a signed distance transform to the resulting shape. The signed
distance transform assigns each point x of Φ0 the Euclidean distance of x to
the closest contour point. Points inside the projected region get positive sign,
points outside this region, get negative sign.

Alternating optimization: In order to minimize (11.13) for both the con-
tour and the pose parameters, an alternating scheme is proposed. First, the
pose parameters are kept fixed and the energy is minimized with respect to
the contour. Afterwards, the contour is retained and one optimizes the energy
for the pose parameters. In the tracking scenario, with the initial pose being
already close to the desired solution, only few (2–5) iterations are sufficient
for convergence.
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Optimization with respect to the contour: Since the shape term is mod-
eled in the image domain, minimization of (11.13) with respect to Φ is straight-
forward and leads to the gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν∇�

( ∇Φ

|∇Φ|

))
+ 2λ (Φ0(ξ) − Φ). (11.14)

One can observe that the shape term pushes Φ towards the projected surface
model, while on the other hand, Φ is still influenced by the image data ensuring
homogeneous regions according to the statistical region model.

Optimization with respect to the pose parameters: Optimization with
respect to the pose parameters needs more care, since the interaction of the
model with the contour in the image involves a projection. At the same time,
the variation of the projected shape with a certain 3D transformation is quite
complex. Principally, the 3D transformation can be estimated from a set of
2D–3D point correspondences in a least squares setting, as will be explained
later in this section. Since we know how 2D points in Φ0 correspond to 3D
points on the surface (Φ0 was constructed by projecting these 3D points),
2D–3D point correspondences can be established by matching points of the
two 2D shapes Φ and Φ0.

Shape matching: For minimizing the shape term in (11.13) with respect to
the pose parameters, we look for a transformation in 2D that can account for
the projections of all permitted transformations in 3D. Therefore, we choose
a nonparametric transformation, in particular a smooth displacement field
w(x) := (u(x), v(x)) and formulate the shape term as

E(u, v) =
∫

Ω

(Φ(x) − Φ0(x + w))2 + α(|∇u|2 + |∇v|2) dx. (11.15)

where α ≥ 0 is a regularization parameter that steers the influence of the regu-
larization relative to the matching criterion. The considered transformation
is very general and, hence, can handle the projected transformations in 3D.
The regularization ensures a smooth displacement field, which corresponds to
penalizing shape deformations. Furthermore, it makes the originally ill-posed
matching problem well-posed.

Optic flow estimation problem: A closer look at (11.15) reveals strong
connections to optic flow estimation. In fact, the energy is a nonlinear version
of the Horn–Schunck functional in [29]. Consequently, the matching problem
can be solved using a numerical scheme known from optic flow estimation.
We will investigate this scheme more closely in Section 11.4.

Alternative matching via ICP: Alternatively, one can match the two
shapes by an iterated closest point (ICP) algorithm [4]. As Φ and Φ0 are both
Euclidean distance images, this is closely related to minimization of (11.15)
for α → 0. In [51] it has been shown empirically that the combination of point
correspondences from both methods is beneficial for pose estimation.
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Inverse projection and Plücker lines: After matching the 2D contours,
the remaining task is to estimate from the nonparametric 2D transformation
a 3D transformation parameterized by the sought vector ξ = (ξRBM , Θ). For
this purpose, the 2D points are changed into 3D entities. For the points in
Φ this means that their projection rays need to be constructed. A projection
ray contains all 3D points that, when projected to the image plane, yield a
zero distance to the contour point there. Hence, for minimizing the distance
in the image plane, one can as well minimize the distance between the model
points and the rays reconstructed from the corresponding points.

There exist different ways to represent projection rays. As we have to
minimize distances between correspondences, it is advantageous to use an
implicit representation for a 3D line. It allows instantaneously to determine
the distance between a point and a line.

An implicit representation of projection rays is by means of so-called
Plücker lines [55, 63]. A Plücker line L = (n,m) is given as a unit vector
n and a moment m with m = x × n for a given point x on the line. The
incidence of a point x on a line L = (n,m) can then be expressed as

x × n − m = 0. (11.16)

Parameter estimation by nonlinear least squares: This equation pro-
vides an error vector and we seek the transformation ξ = (ξRBM , Θ) that
minimizes the norm of this vector over all correspondences. For j = J (xi)
being the joint index of a model point xi, the error to be minimized can be
expressed as∑

i

‖Π
(

exp(ξ̂RBM ) exp(θ1ξ̂1) . . . exp(θJ (xi)ξ̂J (xi))xi

)
× ni − mi‖2

2,

(11.17)

where Π is the projection of the homogeneous 4D vector to a 3D vector
by neglecting the homogeneous component (which is 1), and the symbol ×
denotes the cross product.

Linearization: The minimization problem in (11.17) is a least squares
problem. Unfortunately, however, the equations are non-quadratic due to the
exponential form of the transformation matrices. For this reason, the trans-
formation matrix is linearized and the pose estimation procedure is iterated,
i.e., the nonlinear problem is decomposed into a sequence of linear problems.
This is achieved by

exp(θξ̂) =
∞∑

k=0

(θξ̂)k

k!
≈ I + θξ̂ (11.18)

with I as identity matrix.
This results in

((I + θξ̂ + θ1ξ̂1 . . . + θJ (xi)ξ̂J (xi))Xi)3×1 × ni −mi = 0 (11.19)
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with the unknown pose parameters ξ acting as linear components. This equa-
tion can be reordered into the form A(θξRBM , θ1 . . . θN )T = b. Collecting a
set of such equations (each is of rank two) leads to an overdetermined linear
system of equations, which can be solved using, for example, the Householder
algorithm. The Rodriguez formula can be applied to reconstruct the group ac-
tion from the estimated parameter vector ξ. The 3D points can be transformed
and the process is iterated until it converges.

Multiple camera views: The method can easily be extended to make use
of multiple camera views if all cameras are calibrated to the same world coor-
dinate system. The point correspondences, obtained by projecting the surface
model to all images and extracting contours there, can be combined in a
joint system of equations. The solution of this system is the least squares fit
of the model to the contours in all images. Due to the coupling of contour
and pose estimation, also the contour extraction can benefit from the multi-
view setting. This is demonstrated in the comparison depicted in Figures 11.2
and 11.3.

Fig. 11.3. Result with a two-step approach, i.e., extraction of the contours from
the images followed by contour-based pose estimation. The same initialization as in
Figure 11.2 was used. Top row: Estimated contour. Bottom row: Estimated pose.
As pose and contour are not coupled, the contour extraction cannot benefit from
the two camera views. Moreover, as the contour is not bound to the surface model,
it can run away.
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Fig. 11.4. Result with a global Parzen estimator instead of the suggested local
region statistics. The same initialization as in Figure 11.2 was used. Top row: Esti-
mated contour. Bottom row: Estimated pose. Local differences between foreground
and background are not modeled. With the global model, the right arm of the person
better fits to the background.

11.4 Optic Flow for Motion Prediction

The contour-based tracking explained in the previous section demands a pose
initialization that is close enough to obtain reasonable estimates of the region
statistics. For high frame rates and reasonably slow motion, the result from
the previous frame is a sufficiently good initialization. For very fast motion
or small frame rates, however, it may happen that limbs have moved too far
and the method is not able to recapture them starting with the result from
the previous frame. This problem is illustrated in the first row of Figure 11.5.

A remedy is to improve the initialization by predicting the pose parameters
in the successive frame. The most simple approach is to compute the velocity
from the results in the last two frames and to assume that the velocity stays
constant. However, it is obvious that this assumption is not satisfied at all
times and can lead to predictions that are even much worse than the initial-
ization with the latest result. Auto-regressive models are much more reliable.
They predict the new state from previous ones by means of a parametric
model estimated from a set of training data.
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Fig. 11.5. Motion prediction by optic flow and its relevance. First row: Ini-
tialization with the pose from the previous frame (left). Due to fast motion, the
initialization is far from the correct contour. Consequently, contour extraction (cen-
ter) and tracking (right) fail. Second row: Optic flow field as arrow (left) and color
plot (center) and prediction computed from this flow field (right). The brighter mesh
shows the old pose, the dark mesh the predicted one. Third row: Like first row,
but now the initialization is from the pose predicted by the optic flow.

Pose estimation from optic flow: In this chapter, we focus on an image-
driven prediction by means of optic flow. We assume that the pose has been
correctly estimated in frame t, and we are now interested in a prediction of the
pose in frame t+1 given the images in t and t+1. For this prediction, we need
to compute the optic flow, which provides 2D–2D correspondences between
points in the images. As the 2D–3D correspondences in frame t are known, we
obtain a set of 2D–3D point correspondences between the new frame t+1 and
the model. From these, the pose of the model in frame t+1 can be computed
by solving a sequence of linear systems, as described by Equation (11.19) in
the previous section.

Accumulation of errors: The inherent assumption of knowing the correct
pose of the model in frame t is in fact not exactly satisfied. In practice, there
will be inaccuracies in the estimated pose. This results in the accumulation
of errors when using only model-free schemes based on the optic flow or fea-
ture tracking. However, the contour-based pose estimation from the previous
section, which directly derives correspondences between the image and the
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model, does not suffer from this problem. It is able to correct errors from
the previous frame or from the estimated optic flow. For this reason, error
accumulation is not an issue in the system described here. A result obtained
with the optic flow model detailed below is shown in Figure 11.5.

Optic flow model: The remaining open question is how to compute the optic
flow. The main goal here is to provide a prediction that brings the initializa-
tion closer to the correct pose in order to allow the contour-based method
to converge to the correct solution in case of fast motion. Consequently, the
optic flow method has to be able to deal with rather large displacements.

First assumption: gray value constancy: The basic assumption for optic
flow estimation is the gray value constancy assumption, i.e., the gray value
of a translated point does not change between the frames. With w := (u, v)
denoting the optic flow, this can be expressed by

I(x + w, t + 1) − I(x, t) = 0. (11.20)

This equation is also called the optic flow constraint. Due to nonlinearity in
w, it is usually linearized by a Taylor expansion to yield

Ixu + Iyv + It = 0, (11.21)

where subscripts denote partial derivatives. The linearization may be applied
if displacements are small. For larger displacements, however, the lineariza-
tion is not a good approximation anymore. Therefore, it has been suggested to
minimize the original constraint in (11.20) [43] and to postpone all lineariza-
tions to the numerical scheme [2, 9], which comes down to so-called warping
schemes [3,5,40]. These schemes can deal with rather large displacements and,
therefore, are appropriate for the problem at hand.

Second assumption: smooth flow field: The gray value constancy as-
sumption alone is not sufficient for a unique solution. Additional constraints
have to be introduced. Here we stick to the constraint of a smooth flow field,
as suggested in [29]. It leads to the following energy minimization problem

E(u, v) =
∫

Ω

(I(x, t)−I(x+w, t+1))2+α(|∇u|2+|∇v|2) dx → min (11.22)

that can be solved with variational methods. Note that exactly the same
problem appeared in Section 11.3.3 for matching two contours via (11.15).
Thus we can use almost the same scheme for computing the optic flow between
images and for shape matching.

Noise and brightness changes: When matching two images, one has to
expect noise and violations of the gray value constancy assumption. These
effects have to be taken into account in the optic flow model. In order to deal
with noise, one can apply a robust function Ψ(s2) =

√
s2 + 0.0012 to the first
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term in (11.22) [5, 40]. This has the effect that outliers in the data have less
influence on the estimation result.

Robustness to brightness changes can be obtained by assuming constancy
of the gradient [9]:

∇I(x + w, t + 1) − ∇I(x, t) = 0. (11.23)

With both assumptions together, one ends up with the following energy:

E(u, v) =
∫

Ω1

Ψ
(
(I(x, t) − I(x + w, t + 1))2

)
dx

+γ

∫
Ω1

Ψ
(
(∇I(x, t) − ∇I(x + w, t + 1))2

)
dx

+α

∫
Ω1

(|∇u|2 + |∇v|2) dx.

(11.24)

Note that the domain is restricted to the foreground region Ω1, since we are
only interested in correspondences within this region anyway. This masking of
the background region has the advantage that it considers the most dominant
motion discontinuities, which would otherwise violate the smoothness assump-
tion of the optic flow model. Moreover, it allows for cropping the images to
reduce the computational load.

Euler–Lagrange equations: According to the calculus of variations, a min-
imizer of (11.24) must fulfill the Euler–Lagrange equations

Ψ ′(I2
z )IxIz + γ Ψ ′(I2

xz + I2
yz)(IxxIxz + IxyIyz) − α Δu = 0

Ψ ′(I2
z )IyIz + γ Ψ ′(I2

xz + I2
yz)(IyyIyz + IxyIxz) − α Δv = 0

(11.25)

with reflecting boundary conditions, Δ := ∂xx +∂yy, and the following abbre-
viations:

Ix := ∂xI(x + w, t + 1),
Iy := ∂yI(x + w, t + 1),
Iz := I(x + w, t + 1) − I(x, t),
Ixx := ∂xxI(x + w, t + 1),
Ixy := ∂xyI(x + w, t + 1),
Iyy := ∂yyI(x + w, t + 1),
Ixz := ∂xI(x + w, t + 1) − ∂xI(x, t),
Iyz := ∂yI(x + w, t + 1) − ∂yI(x, t).

(11.26)

Numerical scheme: The nonlinear system of equations in (11.25) can be
solved with the numerical scheme proposed in [9]. It consists of two nested
fixed point iterations for removing the nonlinearities in the equations. The
outer iteration is in wk. It is combined with a downsampling strategy in order
to better approximate the global optimum of the energy. Starting with the
initialization w = 0, a new estimate is computed as wk+1 = wk +(duk, dvk)�.
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In each iteration one has to solve for the increment (duk, dvk). Ignoring here
the term for the gradient constancy, which can be derived in the same way,
the system to be solved in each iteration is

Ψ ′(Ik
z )
(
Ik
xdu

k + Ik
y dv

k + Ik
z

)
Ik
x − αΔ(uk + duk) = 0

Ψ ′(Ik
z )
(
Ik
xdu

k + Ik
y dv

k + Ik
z

)
Ik
y − αΔ(vk + dvk) = 0

(11.27)

If Ψ ′ is constant, this is the case for the shape matching problem in (11.15),
(11.27) is already a linear system of equations and can be solved directly
with an efficient iterative solver like SOR. If Ψ ′ depends on (du, dv), however,
we have to implement a second fixed point iteration, now in (duk,l, dvk,l)
to remove the remaining nonlinearity. Each inner iteration computes a new
estimate of Ψ ′ from the most recent (duk,l, dvk,l). As Ψ ′ is kept fixed in each
such iteration, the resulting system is linear in (duk,l, dvk,l) and can be solved
with SOR. With a faster multigrid solver, it is even feasible to compute the
optic flow in real time [14]. However, in the scenario here, where the contour-
based part is far from real-time performance, the difference to an SOR solver
is probably not worth the effort.

11.5 Prior Knowledge of Joint Angle Configurations

The method surveyed in Sections 11.3 and 11.4 incorporates, apart from the
input images, also prior knowledge explicitly given by the 3D shape model and
the position of the joints. It has been demonstrated that this prior knowledge
plays an important role when seeking the contours. This is in accordance
with findings in previous works on segmentation methods incorporating 2D
shape priors [18, 19, 36]. In particular when the object of interest is partially
occluded, the use of shape priors improves the results significantly.

While the method in Sections 11.3 and 11.4 includes a prior on the con-
tour (for given pose parameters), it does not incorporate a prior on the pose
parameters yet. Knowing the effects of prior shape knowledge, one expects
similarly large improvements when using knowledge about familiar poses. It
is intuitively clear that many poses are a-priori impossible or very unlikely,
and that a successful technique for human tracking should exclude such so-
lutions. Indeed, recent works on human pose estimation focus a lot on this
issue [11,57,59,65]. Their results confirm the relevance of pose priors for reli-
able tracking.

Integrating the prior via the Bayesian formula: The Bayesian formalism
in (11.12) provides the basis for integrating such prior knowledge into the
tracking technique. For convenience we repeat the formula:

p(Φ, ξ|I) =
p(I|Φ, ξ)p(Φ|ξ)p(ξ)

p(I)
→ max . (11.28)
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Three angles of right hip (x,y,z)

Fig. 11.6. Left: Visualization of the training data obtained from two walking
sequences. Only a 3D projection (the three joint angles of the right hip) is shown.
Right: Some training samples applied to a leg model.

While the prior p(ξ) has been ignored so far, the goal of this section is to
learn a probability density from training samples and to employ this density
in order to constrain the pose parameters.

As the prior should be independent from the global translation and rota-
tion of the body in the training sequences, a uniform prior is applied to the
global twist parameters ξRBM . Only the probability density for the joint angle
vector p(Θ) is learned and integrated into the tracking framework.

Nonparametric density estimation: Figure 11.6 visualizes training data
for the legs of a person from two walking sequences obtained by a marker-
based tracking system with a total of 480 samples. Only a projection to three
dimensions (the three joint angles of the right hip) is shown.

There are many possibilities to model probability densities from such train-
ing samples. The most common way is a parametric representation by means
of a Gaussian density, which is fully described by the mean and covariance
matrix of the training samples. Such representations, however, tend to over-
simplify the sample data. Although Figure 11.6 shows only a projection of the
full configuration space, it is already obvious from this figure that pose con-
figurations in a walking motion cannot be described accurately by a Gaussian
density.

In order to cope with the non-Gaussian nature of the configuration space,
[11] have advocated a nonparametric density estimate by means of the Parzen–
Rosenblatt estimator [47,50]. It approximates the probability density by a sum
of kernel functions centered at the training samples. A common kernel is the
Gaussian function, which leads to:

p(Θ) =
1√

2πσN

N∑
i=1

exp
(
− (Θi −Θ)2

2σ2

)
(11.29)
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where N is the number of training samples. Note that (11.29) does not involve
a projection but acts on the conjoint configuration space of all angles. This
means, also the interdependency between joint angles is taken into account.

Choice of the kernel width: The Parzen estimator involves the kernel width
σ as a tuning parameter. Small kernel sizes lead to an accurate representa-
tion of the training data. On the other hand, unseen test samples close to the
training samples may be assigned a too small probability. Large kernel sizes
are more conservative, leading to a smoother approximation of the density,
which in the extreme case comes down to a uniform distribution. Numerous
works on how to optimally choose the kernel size are available in the statistics
literature [58]. In our work, we fix σ as the maximum nearest neighbor dis-
tance between all training samples, i.e., the next sample is always within one
standard deviation. This choice is motivated from the fact that our samples
stem from a smooth sequence of poses.

Energy minimization: Taking the prior density into account leads to an
additional term in the energy (11.13) that constrains the pose parameters to
familiar configurations:

EPrior = − log(p(ξ)). (11.30)

The gradient descent of (11.30) in Θ reads

∂tΘ = −∂EPrior

∂Θ
=
∑N

i=1 wi(Θi −Θ)

σ2
∑N

i=1 wi

(11.31)

wi := exp
(
−|Θi −Θ|2

2σ2

)
. (11.32)

Obviously, this equation draws the pose to the next local maximum of the
probability density. It can be directly integrated into the linear system (11.19)
from Section 11.3.3. For each joint j, an additional equation θk+1

j = θk
j +τ∂tθ

k
j

is appended to the linear system. In order to achieve an equal weighting of
the image against the prior, the new equations are weighted by the number of
point correspondences obtained from the contours. The step size parameter
τ = 0.125σ2 yielded empirically stable results.

Regularization: The prior obviously provides a regularization of the equa-
tion system. Assume a foot is not visible in any camera view. Without prior
knowledge, this would automatically lead to a singular system of equations,
since there are no correspondences that generate any constraint equation with
respect to the joint angles at the foot. Due to the interdependency of the joint
angles, the prior equation draws the joint angles of the invisible foot to the
most probable solution given the angles of all visible body parts.

Robustness to partial occlusions: Apart from providing unique solutions,
the prior also increases the robustness of the tracking in case of unreliable
data, as demonstrated in Figure 11.7. Instead of nonsensically fitting the bad
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Without prior With prior

Fig. 11.7. Relevance of the learned configurations for the tracking stability. Oc-
clusions locally disturb the image-driven pose estimation. This can finally cause a
global tracking failure. The prior couples the body parts and seeks the most familiar
configuration given all the image data.

Fig. 11.8. Pose estimates in a sample frame disturbed by 50 varying rectangles
with random position, size, and gray value and 25% uncorrelated pixel noise.

data, the method seeks a familiar solution that fits the data best. Another
example is shown in Figure 11.8 where, additionally to 25% uniform noise, 50
rectangles of random position, size, and gray value were placed in each image.

11.6 Discussion

The human tracking system described in the preceding sections is based only
on few assumptions on the scene and works quite reliably, as shown for rigid
bodies in [10, 53] and humans in [52] as well as in this chapter. Further
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experiments with the same technique are contained in the next chapter. Never-
theless, there are still lots of challenges that shall be discussed in this section.

Running time: One of these challenges is a reduction of the running time.
Currently, with a 2 GHz laptop, the method needs around 50s /per frame for
384 × 280 stereo images. Even though one could at least obtain a speedup
of factor 4 by using faster hardware and optimizing the implementation, the
method is not adequate for real-time processing. The main computational
load is caused by the iterative contour and pose estimation and the approxi-
mation of region statistics involved therein. More considerable speedups may
be achieved by using the parallelism in these operations via an implementation
on graphics hardware.

However, most applications of 3D human motion tracking do not demand
real-time performance but high accuracy. Sports movement analysis and mod-
elling of motion patterns for computer graphics are run in batch mode anyway.
Thus, improving the running time would mainly reduce hardware costs and
improve user interaction.

Auto-initialization: Trying to automatically initialize the pose in the first
frame is another interesting challenge. So far, a quite accurate initialization
of the pose is needed. For this kind of detection task, the proposed frame-
work seems less appropriate, as it is difficult to detect silhouettes in clut-
tered images. For object detection, patch based methods have already proven
their strength. Thus they can probably solve this task more efficiently. Auto-
initialization has, for instance, been demonstrated in [45] for rigid bodies.
Works in the scope of human tracking can be found in [1,25,49,60,61]. Some
of these approaches even use silhouettes for the initialization. However, in
these cases the contour must be easy to extract from the image data. This is
feasible, for instance, with background subtraction if the background is static.
The advantage of such discriminative tracking is the possibility to reinitialize
after the person has been lost due to total occlusion or the person moving out
of all camera views. Combinations of discriminative and generative models,
as suggested in [61], are discussed in Chapter 8.

Clothed people: In nearly all setups, the subjects have to wear a body
suit to ensure an accurate matching between the silhouettes and the surface
models of the legs. Unfortunately, body suits may be uncomfortable to wear
in contrast to loose clothing (shirts, shorts, skirts, etc.). The subjects also
move slightly different in body suits compared to being in clothes since all
body parts (even unfavored ones) are clearly visible. The incorporation of
cloth models would ease the subjects and also simplify the analysis of outdoor
scenes and arbitrary sporting activities. A first approach in this direction is
presented in Chapter 12.

Prior knowledge on motion dynamics: In Section 11.5, a prior on the
joint angle vector has been imposed. This has lead to a significant improve-
ment in the tracking reliability given disturbed or partially occluded input
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images. However, the prior is on the static pose parameters only. It does not
take prior information about motion patterns, i.e. the dynamics, into account.
Such dynamical priors can be modeled by regression methods such as linear
regression or Gaussian processes [48]. In the ideal case, the model yields a
probability density, which allows the sound integration in a Bayesian frame-
work [17]. Recently, nonlinear dimensionality reduction methods have become
very popular in the context of motion dynamics.

Subspace learning: The idea of dimensionality reduction methods is to learn
a mapping between the original, high-dimensional space of pose parameters
and a low-dimensional manifold in this space. Solutions are expected to lie
only on this manifold, i.e., the search space has been considerably reduced.
The motivation for this procedure is the expected inherent low-dimensional
structure in a human motion pattern. For instance, the pattern of walking is
basically a closed one-dimensional loop of poses when modeled on an adequate,
however complex, manifold. Linear projection methods like PCA can be sup-
posed to only insufficiently capture all the limb movements in motion patterns.
Nonlinear methods like Gaussian process latent variable models (GPLVM),
ISOMAP, or others have been shown to be more adequate [25,27,35,65]. See
also Chapter 2 and Chapter 10 for more detailed insights.

While dimensionality reduction can successfully model a single motion pat-
tern like walking, running, jumping, etc., it is doubtful that the same concept
still works if the model shall contain multiple such patterns. Even though each
single pattern may be one- or two-dimensional, the combination of patterns
is not. Hence, one has to employ a mixture model with all the practical prob-
lems concerning the choice of mixture components and optimization. In case
of multiple motion patterns, it may thus be beneficial to define models in the
original high-dimensional space, as done, e.g., in the last chapter for static
pose priors. This way, one knows for sure that all different patterns can be
distinguished. Dealing with the arising high dimensionality when dynamics
are included, however, remains a challenging open problem.

11.7 Summary

This chapter has presented a generative Bayesian model for human motion
tracking. It includes the joint estimation of the human silhouette and the body
pose parameters. The estimation is constrained by a static pose prior based
on nonparametric Parzen densities. Furthermore, the pose in new frames is
predicted by means of optic flow computed in the foreground region. The ap-
proach demands a predefined surface model, the positions of the joints, an
initialization of the pose in the first frame, and a calibration of all cameras to
the same world coordinate system. In return one obtains reliable estimates of
all pose parameters without error accumulation. There is no assumption of a
static background involved. Instead, the foreground and background regions
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are supposed to be locally different. Due to the pose prior, the method can
cope with partial occlusions of the person. We also discussed further exten-
sions, in particular the use of image patches for initial pose detection and the
integration of dynamical priors.
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Appendix: Semiautomatic Acquisition of a Body Model

As most model-based human tracking methods, also the approach in this
chapter is based on a model that consists of multiple rigid parts interconnected
by joints. Basically, this body model has to be designed manually. Thus, often
one can find quite simplistic stick figures based on ellipsoidal limbs in the
literature. In this subsection, we briefly describe a method that allows to
construct a more accurate surface model by means of four key views of a
person as shown in Figure 11.9.

Body separation. After segmentation we separate the arms from the torso
of the model. Since we only generate the upper torso, the user can define a
bottom line of the torso by clicking on the image. Then we detect the arm pits
and the neck joint from the front view of the input image. The arm pits are

Fig. 11.9. Steps for semiautomatically deriving a body model from four input
images.
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simply given by the two lowermost corners of the silhouette which are not at
the bottom line and exceed a preset angle threshold. The position of the neck
joint can be found when moving along the boundary of the silhouette from
an upper shoulder point to the head. The narrowest x-slice of the silhouette
gives the neck joint.

Joint localization. After this rough segmentation of the human torso we
detect the positions of the arm joints. We use a special reference frame (joint
view in Figure 11.9) that allows to extract arm segments. To gain the length
of the hands, upper arms, etc. we first apply a skeletonization procedure.
Skeletonization [33] is a process of reducing object pixels in a binary image to
a skeletal remnant that largely preserves the extent and connectivity of the
original region while eliminating most of the original object pixels. Then we
use the method presented in [16] to detect corners of the skeleton to identify
joint positions of the arms.

Since the center of the elbow joint is not at the center of the arm but
beneath, the joint localizations need to be refined. For this reason, we shift
the joint position aiming at correspondence with the human anatomy. The
resulting joint locations are shown in the middle right image of Figure 11.9.

Surface mesh reconstruction. For surface mesh reconstruction we assume
calibrated cameras in nearly orthogonal views. Then a shape-from-silhouettes
approach [34] is applied. We detect control points for each slice and interpolate
them by a B-spline curve using the DeBoor algorithm. We start with one slice
of the first image and use its edge points as the first two reference points.
They are then multiplied with the fundamental matrix of the first to the
second camera, and the resulting epipolar lines are intersected with the second
silhouette resulting in two more reference points. The reference points are
intersected leading to four control points in 3D space.

For arm generation we use a similar scheme for building a model: We
use two other reference frames (input images 2 and 3 in Figure 11.9). Then
the arms are aligned horizontally and we use the fingertip as starting point
on both arms. These silhouettes are sliced vertically to obtain the width and
height of each arm part. The arm patches are then connected to the mid plane
of the torso.
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Summary. This chapter presents an approach for motion capturing (MoCap) of
dressed people. A cloth draping method is embedded in a silhouette-based MoCap
system and an error functional is formalized to minimize image errors with respect
to silhouettes, pose and kinematic chain parameters, the cloth draping components
and external forces. Furthermore, Parzen-Rosenblatt densities on static pose config-
urations are used to stabilize tracking in highly noisy image sequences. We report
on various experiments with two types of clothes, namely a skirt and a pair of
shorts. Finally we compare the angles of the MoCap system with results from a
commercially available marker-based tracking system. The experiments show, that
we are less than one dregree above the error range of marker-based tracking systems,
though body parts are occluded with cloth.

12.1 Introduction

Classical motion capture (MoCap) comprises techniques for recording the
movements of real objects such as humans or animals [35]. In biomechani-
cal settings, it is aimed at analyzing captured data to quantify the movement
of body segments, e.g., for clinical studies, diagnostics of orthopaedic patients
or to help athletes to understand and improve their performances. It has also
grown increasingly important as a source of motion data for computer ani-
mation. Surveys on existing methods for MoCap can be found in [11, 21, 22].
Well-known and commercially available marker-based tracking systems exist,
e.g., those provided by Motion Analysis, Vicon or Simi [20]. The use of markers
comes along with intrinsic problems, e.g., incorrect identification of markers,
tracking failures, the need for special laboratory environments and lighting
conditions and the fact that people may not feel comfortable with markers
attached to the body. This can lead to unnatural motion patterns. As well,
marker-based systems are designed to track the motion of the markers them-
selves, and thus it must be assumed that the recorded motion of the markers
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is identical to the motion of the underlying human segments. Since human
segments are not truly rigid, this assumption may cause problems, especially
in highly dynamic movements typically seen in sporting activities. For these
reasons, marker-less tracking is an important field of research that requires
knowledge in biomechanics, computer vision and computer graphics.

Typically, researchers working in the area of computer vision prefer sim-
plified human body models for MoCap, e.g., stick, ellipsoidal, cylindric or
skeleton models [3, 4, 10, 13, 19]. In computer graphics advanced object mod-
elling and texture mapping techniques for human motions are well-known
[5,6,17,36], but image processing or pose estimation techniques (if available)
are often simplified.

In [9] a shape-from-silhouettes approach is applied to track human beings
and incorporates surface point clouds with skeleton models. One of the sub-
jects even wears a pair of shorts, but the cloth is not explicitly modeled and
simply treated as rigid component. Furthermore, the authors just perform a
quantitative error analysis on synthetic data, whereas in the present study a
second (commercial) marker-based tracking system is used for comparison.

A recent work of us [28] combines silhouette-based pose estimation with
more realistic human models: These are represented by free-form surface
patches and local morphing along the surface patches is applied to gain a re-
alistic human model within silhouette-based MoCap. Also a comparison with
a marker-based system is performed indicating a stable system. In this setup,
the subjects have to wear a body suit to ensure an accurate matching between
the silhouettes and the surface models of the legs. Unfortunately, body suits
may be uncomfortable to wear in contrast to loose clothing (shirts, shorts,
skirts, etc.). The subjects also move slightly different in body suits compared
to being in clothes since all body parts (even unfavorable ones) are clearly
visible. The incorporation of cloth models would also simplify the analysis of
outdoor scenes and arbitrary sporting activities. It is for these reasons that
we are interested in a MoCap system which also incorporates cloth models. A
first version of our approach has been presented in [29].

Cloth draping [12, 14, 18, 34] is a well-known research topic in computer
graphics. Virtual clothing can be moved and rendered so that it blends seam-
lessly with motion and appearance in movie scenes. The motion of fabrics is
determined by bending, stretching and shearing parameters, as well as exter-
nal forces, aerodynamic effects and collisions. For this reason the estimation of
cloth simulation parameters is essential and can be done by video [2,7,24,25] or
range data [16] analysis. Existing approaches can be roughly divided into geo-
metrically or physically based ones. Physical approaches model cloth behavior
by using potential and kinetic energies. The cloth itself is often represented as
a particle grid in a spring-mass scheme or by using finite elements [18]. Geo-
metric approaches [34] model cloths by using other mechanics theories which
are often determined empirically. These methods can be very fast computa-
tionally but are often criticized as being not very appealing visually.

The chapter is built upon the foundations and basic tracking system de-
scribed in Chapter 11. This comprises techniques for image segmentation with
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level sets, pose estimation of kinematic chains, shape registration based on
ICP or optic flow, motion prediction by optic flow, and a prior on joint angle
configurations. The focus of this work is now the embedding of a clothing
model within the MoCap system. To make the chapter self-contained, we
repeat foundations in the next section. In Section 12.3, we continue with in-
troducing a kinematically motivated cloth draping model and a deformation
model, which allow deformation of the particle mesh of a cloth with respect to
oncoming external forces. The proposed draping method belongs to the class
of geometric approaches [34] for cloth draping. The advantages for choosing
this class are twofold: Firstly, we need a model which supports time efficiency,
since cloth draping is needed in one of the innermost loops for minimization of
the used error functional. Secondly, it should be easy to implement and based
on the same parametric representation as the used free-form surface patches.
This allows a direct integration into the MoCap system. In Section 12.4 we
will explain how to minimize the cloth draping and external forces within an
error functional for silhouette-based MoCap. This allows us to determine joint
positions of the legs even if they are partially occluded (e.g., by skirts). We
present MoCap results of a subject wearing a skirt and a pair of shorts and
perform a quantitative error analysis. Section 12.5 concludes with a summary.

12.1.1 Contributions

In this chapter we inform about the following main contributions:

1. A so-called kinematic cloth draping method is proposed. It belongs to the
class of geometric cloth draping methods and is well suited to be embedded
in a MoCap-system due to the use of a joint model.

2. The cloth draping is extended by including a deformation model which
allows to adapt the cloth draping to external forces, the scene dynamics
or speed of movement.

3. The main contribution is to incorporate the cloth draping algorithm in
a silhouette-based MoCap system. This allows for determining the joint
configurations even when parts of the person are covered with fabrics (see
Figure 12.1).

4. Finally we perform a quantitative error analysis. This is realized by com-
paring the MoCap-results with a (commercially available) marker-based
tracking system. The analysis shows that we get stable results and can
compete with the error range of marker-based tracking systems.

12.2 Foundations: Silhouette-based MoCap

This work is based on a marker-less MoCap system [28, 30] (Figure 12.2). In
this system, the human being is represented in terms of free-form surface
patches, joint indices are added to each surface node and the joint positions
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Fig. 12.1. (A) Input: A multi-view image sequence (4 cameras, one cropped image is
shown). (B) The algorithm determines the cloth parameters and joint configuration
of the underlined leg model. (C) Cloth and leg configuration in a virtual environment.
(D) Plain leg configuration.

Fig. 12.2. The MoCap system in [28]: Top: The model of the person is assumed.
Left: The object contours are extracted in the input images. Right: These are used
for correspondence pose estimation. The pose result is applied as shape prior for the
segmentation process and the process is iterated.

are assumed. This allows to generate arbitrary body configurations, steered
through joint angles. The corresponding counterparts in the images are 2D
silhouettes: These are used to reconstruct 3D ray bundles and a spatial dis-
tance constraint is minimized to determine the position and orientation of the
surface mesh and the joint angles. In this section we will give a brief summary
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of the MoCap system. These foundations are needed later to explain concisely,
where and how the cloth draping approach is incorporated. A more detailed
survey can be found in Chapter 11.

12.2.1 Silhouette Extraction

In order to estimate the pose from silhouettes, these silhouettes have to be
extracted first, which comes down to a classical segmentation problem. In the
system described here, the segmentation is based on a level set representation
of contours.

A level set function Φ ∈ Ω �→ R splits the image domain Ω into the
foreground region Ω1 and background region Ω2 with Φ(x) > 0 if x ∈ Ω1 and
Φ(x) < 0 if x ∈ Ω2. The zero-level line thus marks the boundary between both
regions. In order to make the representation unique, the level set functions
are supposed to be signed distance functions.

Both regions are analyzed with respect to their feature distribution.
The feature space may contain, e.g., gray value, color, or texture features.
The key idea is to evolve the contour such that the two regions maximize the
a-posteriori probability. Usually, one assumes a priori a smooth contour, but
more sophisticated shape priors can be incorporated as well, as shown in
Section 12.2.4. Maximization of the posterior can be reformulated as mini-
mization of the following energy functional:

E(Φ, p1, p2)=−
∫

Ω

(
H(Φ(x)) log p1 + (1 −H(Φ(x))) log p2 + ν|∇H(Φ(x))|

)
dx,

(12.1)

where ν > 0 is a weighting parameter and H(s) is a regularized version of
the Heaviside function, e.g., the error function. The probability densities pi

describe the region model. We use a local Gaussian distribution. These densi-
ties are estimated according to the expectation-maximization principle. Having
the level set function initialized with some contour, the probability densities
within the two regions can be estimated. Contour and probability densities are
then updated in an iterative manner. An illustration can be seen in Figure 12.3.
The left picture depicts the initialization of the contour. The right one shows
the estimated (stationary) contour after 50 iterations. As can be seen, the
legs and the skirt are well extracted, but there are some problems in the area
of the feet region caused by shadows. Incorporation of a shape prior greatly
reduces such effects.

12.2.2 Pose Estimation

Assuming an extracted image contour and the silhouette of the projected sur-
face mesh, the closest point correspondences between both contours are used
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Fig. 12.3. Silhouette extraction based on level set functions. Left: Initial segmen-
tation. Right: Segmentation result.
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Fig. 12.4. Comparison of a 3D point x with a 3D line L.

to define a set of corresponding 3D lines and 3D points. Then a 3D point-line-
based pose estimation algorithm for kinematic chains is applied to minimize
the spatial distance between both contours: For point-based pose estimation
each line is modeled as a 3D Plücker line Li = (ni,mi), with a (unit) direction
ni and moment mi [23]. There exist different ways to represent projection rays.
As we have to minimize distances between correspondences, it is advantageous
to use an implicit representation for a 3-D line. It allows instantaneously to
determine the distance between a point and a line. A Plücker line L = (n,m)
is given as a unit vector n and a moment m with m = x×n for a given point
x on the line. An advantage of this representation is its uniqueness (apart
from possible sign changes). Moreover, the incidence of a point x on a line
L = (n,m) can be expressed as

x ∈ L ⇔ x× n−m = 0. (12.2)

This equation provides us with an error vector. Let L = (n,m), with m = v×n
as shown in Figure 12.4, and x = x1 + x2, with x /∈ L and x2 ⊥ n.
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Since x1 × n = m, x2 ⊥ n, and ‖n‖ = 1, we have

‖x× n−m‖ = ‖x1 × n + x2 × n−m‖ = ‖x2 × n‖ = ‖x2‖ (12.3)

where ‖ · ‖ denotes the Euclidean norm. This means that x× n−m in (12.2)
results in the (rotated) perpendicular error vector to line L.

The 3D rigid motion is expressed as exponential form

M = exp(θξ̂) = exp
(

θω̂ θv
03×1 0

)
(12.4)

where θξ̂ is the matrix representation of a twist ξ ∈ se(3) = {(v, ω̂)|v ∈
R

3, ω̂ ∈ so(3)}, with so(3) = {A ∈ R
3×3|A = −AT }. The Lie algebra so(3)

is the tangential space of the 3D rotations. Its elements are (scaled) rotation
axes, which can either be represented as a 3D vector or skew symmetric matrix,

θω = θ

⎛⎝ω1

ω2

ω3

⎞⎠ , with ‖ω‖2 = 1 or θω̂ = θ

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ . (12.5)

A twist ξ contains six parameters and can be scaled to θξ for a unit vector ω.
The parameter θ ∈ R corresponds to the motion velocity (i.e., the rotation
velocity and pitch). For varying θ, the motion can be identified as screw motion
around an axis in space. The six twist components can either be represented
as a 6D vector or as a 4 × 4 matrix,

θξ=θ(ω1, ω2, ω3, v1, v2, v3)T , ‖ω‖2 =1, θξ̂=θ

⎛⎜⎜⎝
0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

⎞⎟⎟⎠ . (12.6)

To reconstruct a group action M ∈ SE(3) from a given twist, the exponential
function exp(θξ̂) =

∑∞
k=0

(θξ̂)k

k! = M ∈ SE(3) must be computed. This can
be done efficiently by using the Rodriguez formula [23].

For pose estimation the reconstructed Plücker lines are combined with the
screw representation for rigid motions:

Incidence of the transformed 3D point Xi with the 3D ray Li = (ni,mi)
can be expressed as

(exp(θξ̂)Xi)3×1 × ni −mi = 0. (12.7)

Since exp(θξ̂)Xi is a 4D vector, the homogeneous component (which is 1) is
neglected to evaluate the cross product with ni. Then the equation is linearized
and iterated, see [28].

Joints are expressed as special screws with no pitch of the form θj ξ̂j with
known ξ̂j (the location of the rotation axes is part of the model) and unknown
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joint angle θj . The constraint equation of an ith point on a jth joint has the
form

(exp(θξ̂) exp(θ1ξ̂1) . . . exp(θj ξ̂j)Xi)3×1 × ni −mi = 0 (12.8)

which is linearized in the same way as the rigid body motion itself. It leads to
three linear equations with the six unknown pose parameters and j unknown
joint angles.

12.2.3 Shape Registration

The goal of shape registration can be formulated as follows: Given a certain
distance measure; the task is to determine one transformations that leads
to the minimum distance between shapes. A very popular shape matching
method working on such representations is the iterated closest point (ICP)
algorithm [1]. Given two finite sets P and Q of points. The (original) ICP
algorithm calculates a rigid transformation T and attempts to ensure TP ⊆ Q.

1. Nearest point search: for each point p ∈ P find the closest point q ∈ Q.
2. Compute registration: determine the transformation T that minimizes

the sum of squared distances between pairs of closest points (p, q).
3. Transform: apply the transformation T to all points in set P .
4. Iterate: repeat step 1 to 3 until the algorithm converges.

This algorithm converges to the next local minimum of the sum of squared
distances between closest points. A good initial estimate is required to en-
sure convergence to the sought solution. Unwanted solutions may be found if
the sought transformation is too large, e.g., many shapes have a convergence
radius in the area of 20◦ [8], or if the point sets do not provide sufficient
information for a unique solution.

The original ICP algorithm has been modified in order to improve the rate
of convergence and to register partially overlapping sets of points. Zhang [37]
uses a modified cost function based on robust statistics to limit the influence
of outliers. Other approaches aim at the avoidance of local minima during
registration subsuming the use of Fourier descriptors [31], color information
[15], or curvature features [33].

The advantages of ICP algorithms are obvious: they are easy to implement
and will provide good results, if the sought transformation is not too large [8].
For our tracking system we compute correspondences between points on image
silhouettes to the surface mesh with the ICP algorithm presented in [31].

In Chapter 11 and [27] it is further explained how an alternative matching
procedure, by using the optic flow can be used to improve the convergence
rate and convergence radius. In this work we make use of both matchers to
register a surface model to an image silhouette.
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12.2.4 Combined Pose Estimation and Segmentation

Since segmentation and pose estimation can both benefit from each other, it
is sensible to couple both problems in a joint optimization problem. To this
end, the energy functional for image segmentation in (12.1) is extended by an
additional term that integrates the surface model:

E(Φ, θξ) = −
∫

Ω

(
H(Φ) log p1 + (1 −H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx

+ λ

∫
Ω

(Φ− Φ0(θξ))2 dx︸ ︷︷ ︸
Shape

. (12.9)

The quadratic error measure in the shape term has been proposed in the
context of 2D shape priors, e.g., in [32]. The prior Φ0 ∈ Ω → R is assumed to
be represented by the signed distance function. This means in our case, Φ0(x)
yields the distance of x to the silhouette of the projected object surface.

Given the contour Φ, the pose estimation method from Section 12.2.2
minimizes the shape term in (12.9). Minimizing (12.9) with respect to the
contour Φ, on the other hand, leads to the gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν∇�

( ∇Φ

|∇Φ|

))
+ 2λ (Φ0(θξ) − Φ). (12.10)

The total energy is minimized by iterating both minimization procedures.
Both iteration steps minimize the distance between Φ and Φ0. While the pose
estimation method draws Φ0 towards Φ, thereby respecting the constraint
of a rigid motion, (12.10) in return draws the curve Φ towards Φ0, thereby
respecting the data in the image.

12.2.5 Quantitative Error Analysis

A lack of many studies (e.g. [19]) is that only a visual feedback about the pose
result is given, by overlaying the pose result with the image data.

To enable a quantitative error analysis, we use a commercial marker-based
tracking system for a comparison. Here, we use the Motion Analysis software
[20], with an 8-Falcon-camera system. For data capture we use the Eva 3.2.1
software and the Motion Analysis Solver Interface 2.0 for inverse kinematics
computing. In this system a human has to wear a body suit and retroflective
markers are attached to it. Around each camera is a strobe light led ring and
a red-filter is in front of each lens. This gives very strong image signals of
the markers in each camera. These are treated as point markers which are
reconstructed in the eight-camera system. Figure 12.5 shows a screen shot
of the Motion Analysis system. The system is calibrated by using a wand-
calibration method. Due to the filter in front of the images we had to use a
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Fig. 12.5. Screen shot of the used EVA solver from motion analysis.
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Fig. 12.6. Tracked arms: The angle diagrams show the elbow values of the motion
analysis system (dotted) and the silhouette system (solid).

second camera setup which provides real image data. This camera system is
calibrated by using a calibration cube. After calibration, both camera systems
are calibrated with respect to each other. Then we generate a stick-model from
the point markers including joint centers and orientations. This results in a
complete calibrated setup we use for a system comparison.

Figure 12.6 shows the first test sequence, where the subject is just moving
the arms forwards and backwards. The diagram on the right side shows the
estimated angles of the right elbow. The marker results are given as dotted
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Fig. 12.7. Tracked Push-ups: The angle diagrams show the elbow values of the
motion analysis system (dotted) and the silhouette system (solid).

lines and the silhouette results in solid lines. The overall error between both
angles diagrams is 2.3 degrees, including the tracking failure between frames
200 till 250.

Figure 12.7 shows the second test sequence, where the subject is perform-
ing a series of push-ups. Here the elbow angles are much more characteristic
and also well comparable. The overall error is 1.7 degrees. Both sequences
contain partial occlusions in certain frames. But this can be handled from the
algorithm.

In [26] eight biomechanical measurement systems are compared (includ-
ing the Motion Analysis system). A rotation experiment is performed, which
shows that the RMS1 errors are typically within three degrees. Our error
measures fit in this range quite well.

12.3 Kinematic Cloth Draping

To integrate a clothing model in the MoCap system, we decided to use a
geometric approach. The main reason is that cloth draping is needed in one
of the innermost loops for pose estimation and segmentation. Therefore it
must be very fast. In our case we need around 400 iterations for each frame
to converge to a solution. A cloth draping algorithm in the area of seconds
would require hours to calculate the pose of one frame and weeks for a whole
sequence.

We decided to model the skirt as a string-system with underlined kinematic
chains: The main principle is visualized on the left in Figure 12.8 for a piece
of cloth falling on a plane. The piece of cloth is represented as a particle grid,
1 Root mean square.
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Fig. 12.8. The cloth draping principle. Joints are used to deform the cloth while
draping on the surface mesh.

a set of points with known topology. While lowering the cloth, the distance of
each cloth point to the ground plane is determined. If the distance between
one point on the cloth to the surface is below a threshold, the point is set
as a fixed-point, see the top right image on the left of Figure 12.8. Now the
remaining points are not allowed to fall downwards anymore. Instead, for each
point, the nearest fixed-point is determined and a joint (perpendicular to the
particle point) is used to rotate the free point along the joint axis through
the fixed point. The used joint axes are marked as blue lines in Figure 12.8. The
image on the right in Figure 12.8 shows the geometric principle to determine
the twist for rotation around a fixed point: The blue line represents a mesh of
the rigid body, x is the fixed point and the (right) pink line segment connects
x to a particle p of the cloth. The direction between both points is projected
onto the y-plane of the fixed point (1). The direction is then rotated around
90 degrees (2), leading to the rotation axis n. The point pairs (n, x× n) are
the components of the twist, see Equation (12.6). While lowering the cloth,
free particles not touching a second rigid point, will swing below the fixed
point (e.g. p′). This leads to an opposite rotation (indicated with (1’), (2’)
and n′) and the particle swings back again, resulting in a natural swinging
draping pattern. The draping velocity is steered through a rotation velocity θ,
which is set to 2 degrees during iteration. Since all points either become fixed
points, or result in a stationary configuration while swinging backwards and
forwards, we constantly use 50 iterations to drape the cloth. The remaining
images on the left in Figure 12.8 show the ongoing draping and the final result.
Figure 12.9 shows the cloth draping steps of a skirt model.

Figure 12.10 shows example images of a skirt and a pair of shorts falling
on the leg model. The skirt is modeled as a 2-parametric mesh model. Due to
the use of general rotations, the internal distances in the particle mesh cannot
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Fig. 12.9. Draping of the skirt model.

Fig. 12.10. Cloth draping of a skirt and shorts in a simulation environment.

Fig. 12.11. Reconstraining the skirts’ length.

change with respect to one of these dimensions, since a rotation maintains
the distance between the involved points. However, this is not the case for
the second sampling dimension. For this reason, the skirt needs to be re-
constrained after draping. This is visualized in Figure 12.11: If a stretching
parameter is exceeded, the particles are reconstrained to minimal distance to
each other. This is only done for the non-fixed points (i.e., for those which are
not touching the skin). It results in a better appearance especially for certain
leg configurations.

Figure 12.11 shows that even the creases are maintained. In this case,
shorts are simpler since they are modeled as cylinders, transformed together
with the legs and then draped.

To improve the dynamic behavior of clothing during movements, we also
add external forces to the cloth draping. We continue with the cloth-draping
in the following way: dependent on the direction of a force we determine a
joint on the nearest fixed point for each free point on the surface mesh with
the joint direction being perpendicular to the force direction. Now we rotate
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Fig. 12.12. External forces, e.g., virtual wind on the shorts (left) and the skirt
(right). Visualized is frontal and backward wind.

Fig. 12.13. Left: Overlaid pose result without external forces. Right: Overlaid pose
result including external forces.

the free point around this axis dependent on the force amount (expressed as
an angle) or until the cloth is touching the underlying surface. Figure 12.12
shows examples of the shorts and skirt with frontal or backward virtual wind
acting as external force. The external forces and their directions are later
part of the minimization function during pose tracking. Figure 12.13 visualizes
the effect of the used deformation model. Since the motion dynamics of the
cloth are determined dynamically, we need no information about the cloth
type or weight since they are implicitly determined from the minimized cloth
dynamics in the image data; we only need the measurements of the cloth.

12.4 Combined Cloth Draping and MoCap

The assumptions are as follows: We assume the representation of a subject’s
lower torso (i.e., for the hip and legs) in terms of free-form surface patches. We
also assume known joint positions along the legs. Furthermore we assume the
wearing of a skirt or shorts with known measures. The person is walking or
stepping in a four-camera setup. These cameras are triggered and calibrated
with respect to one world coordinate system. The task is to determine the pose
of the model and the joint configuration. For this we minimize the image error
between the projected surface meshes to the extracted image silhouettes. The
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Fig. 12.14. The basic algorithm for combined cloth draping and motion capturing.

unknowns are the pose, kinematic chain and the cloth parameters (external
forces, cloth thickness, etc.). The task can be represented as an error functional
as follows:

E(Φ, p1, p2, θξ, θ1, . . . , θn, c, w) =

−
∫

Ω

(
H(Φ) log p1 + (1 −H(Φ)) log p2 + ν|∇H(Φ)|

)
dx︸ ︷︷ ︸

segmentation

+λ

∫
Ω

(Φ− Φ0( θξ, θ1, . . . , θn︸ ︷︷ ︸
pose and kinematic chain,

, c, w︸︷︷︸
external forces

))dx

︸ ︷︷ ︸
shape error

Due to the large number of parameters and unknowns we decided for an
iterative minimization scheme, see Figure 12.14: Firstly, the pose, kinematic
chain and external forces are kept constant, while the error functional for
the segmentation (based on Φ, p1, p2) is minimized (Section 12.2.1). Then
the segmentation and external forces are kept constant while the pose and
kinematic chain are determined to fit the surface mesh and the cloth to the
silhouettes (Section 12.2.2). Finally, different directions of external forces are
sampled to refine the pose result (Section 12.3). Since all parameters influence
each other, the process is iterated until a steady state is reached. In our
experiments, we always converged to a local minimum.
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12.5 Experiments

For the experiments we used a four-camera set up and grabbed image se-
quences of the lower torso with different motion patterns: The subject was
asked to wear the skirt and the shorts while performing walking, leg crossing
and turning, knee bending and walking with knees pulled up. We decided on
these different patterns, since they are not only of importance for medical
studies (e.g., walking), but they are also challenging for the cloth simulator,
since the cloth is partially stretched (knee pulling sequence) or hanging down
loosely (knee bending). The turning and leg crossing sequence is interesting
due to the higher occlusions. Figure 12.15 shows some pose examples for the
subject wearing the skirt (top) and shorts (bottom). The pose is visualized
by overlaying the projected surface mesh onto the images. Just one of the
four camera views is shown. Each sequence consists of 150–240 frames. Fig-
ure 12.16 visualizes the stability of our approach: While grabbing the images,
a couple of frames were stored completely wrong. These sporadic outliers can
be compensated from our algorithm, and a few frames later (see the image
on the right) the pose is correct. Figure 12.17 shows leg configurations in a
virtual environment. The position of the body and the joints reveal a natural
configuration.

Finally, the question about the stability arises. To answer this question,
we attached markers to the subject and tracked the sequences simultaneously
with the commercially available Motion Analysis system [20]. The markers
are attached to the visible parts of the leg and are not disturbed by the
cloth, see Figure 12.18. We then compare joint angles for different sequences
with the results of the marker-based system, similar to Section 12.2.5. The

Fig. 12.15. Example sequences for tracking clothed people. Top row: walking, leg
crossing, knee bending and knee pulling with a skirt. Bottom row: walking, leg
crossing, knee bending and knee pulling with shorts. The pose is determined from
four views (just one of the views is shown, images are cropped).
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Fig. 12.16. Error during grabbing the images.

Fig. 12.17. Example leg configurations of the sequences. The examples are taken
from the subject wearing the shorts (blue) and the skirt (red) (leg crossing, walking,
knee bending, knee pulling).

Fig. 12.18. The set-up for quantitative error analysis: Left/middle, the subject with
attached markers. The cloth does not interfere with tracking the markers. Right: A
strobe light camera of the used Motion Analysis system.

overall errors for both types of cloth varies between 1.5 and 4.5 degrees, which
indicates a stable result, see [26]. Table 12.1 summarizes the deviations.

The diagrams in Figure 12.19 shows the overlay of the knee angles for two
skirt and two shorts sequences. The two systems can be identified by the
smooth curves from the Motion Analysis system and unsmoothed curves (our
system).
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Table 12.1. Deviations of the left and right knee for different motion sequences.

Skirt Shorts

Sequence Left knee Right knee

Dancing 3.42 2.95
Knee-up 3.22 3.43
Knee bending 3.33 3.49
Walking 2.72 3.1

Sequence Left knee Right knee

Dancing 4.0 4.0
Knee-up 3.14 4.42
Knee bending 2.19 3.54
Walking 1.52 3.38
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Fig. 12.19. Left: Knee angles from sequences wearing the shorts. Right: Knee
angles from sequences wearing the skirt. Top left: Angles of the knee up sequence.
Bottom left: Angles of the knee bending sequence. Top right: Angles of the walk-
ing sequence. Bottom right: Angles of the leg crossing sequence.

12.5.1 Prior Knowledge on Angle Configurations

Chapter 11 also introduced the use of nonparametric density estimates to build
additional constraint equations to enforce the algorithm to converge to famil-
iar configurations. It further can be seen as the embedding of soft-constraints
to penalize configurations which are uncommon (e.g., to move the arm through
the body) and they regularize the equations which results in guaranteed non-
singular system of equations. These advantages can also be seen from the
experiments in Figures 12.20, 12.21 and 12.22:
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Fig. 12.20. Scissors sequence (cropped images, one view is shown): The images
have been distorted with 60% uncorrelated noise, rectangles of random size and gray
values and a black stripe across the images.
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Fig. 12.21. Quantitative error analysis of the scissors sequence (the knee angles are
shown). Black: the results of the Motion Analysis system. Blue: the outcome from
our markerless system (deviation: 3.45 and 2.18 degrees). Red: The results from our
system for the highly disturbed image data (deviation: 6.49 and 3.0 degrees).

Figure 12.20 shows results of a scissors sequence. The images have been
distorted with 60% uncorrelated noise, rectangles of random size and gray
values and a black stripe across the images. Due to prior knowledge of scissor
jumps, the algorithm is able to track the sequence successfully. The diagram
in Figure 12.21 quantifies the result by overlaying the knee angles for the
marker results (black) with the undisturbed result (blue) and highly noised
(red) image data. The deviation for the plain data is 3.45 and 2.18 degrees,
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Fig. 12.22. Cartwheel sequence in a Lab environment: The legs are not visible in
some key frames, but the prior knowledge allows to give the legs a natural (most
likely) configuration. The top images shows two views and three example frames of
the sequence. The bottom images show the leg configuration in a virtual environ-
ment.

respectively and for the highly disturbed sequence we get 6.49 and 3.0 degrees.
Due to the high amount of noise added to the image data, we consider the
outcome as a good result.

Figure 12.22 shows results from a cartwheel sequence. During tracking the
sequence the legs are not visible in some key frames, but the prior knowledge
allows to give the legs a natural (most likely) configuration. The top images
shows two views and three example frames of the sequence. The bottom images
show the leg configuration in a virtual environment.

12.6 Summary

The contribution presents an approach for motion capture of clothed people.
To achieve this we extend a silhouette-based motion capture system, which
relies on image silhouettes and free-form surface patches of the body with
a cloth draping procedure. We employ a geometric approach based on kine-
matic chains. We call this cloth draping procedure kinematic cloth draping.
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This model is very well suited to be embedded in a motion capture system
since it allows us to minimize the cloth draping parameters (and external
forces) within the same error functional such as the segmentation and pose
estimation algorithm. Due to the number of unknowns for the segmentation,
pose estimation, joints and cloth parameters, we decided on an iterative so-
lution. The experiments with a skirt and shorts show that the formulated
problem can be solved. We are able to determine joint configurations and
pose parameters of the kinematic chains, though they are considerably cov-
ered with clothes. Indeed, we use the cloth draping appearance in images to
recover the joint configuration and simultaneously determine dynamics of the
cloth. Furthermore, Parzen-Rosenblatt densities of static joint configurations
are used to generate constraint equations which enables a tracking of persons
in highly noisy or corrupted image sequences.

To quantify the results, we performed an error analysis by comparing our
method with a commercially available marker-based tracking system. The
experiments show that we are close to the error range of marker-based tracking
systems [26].

Applications are straightforward: The motion capture results can be used
to animate avatars in computer animations, and the angle diagrams can be
used for the analysis of sports movements or clinical studies. The possibility of
wearing loose clothes is much more comfortable for many people and enables
a more natural motion behavior. The presented extension also allows us to
analyze outdoor activities, e.g., soccer or other team sports.

For future works we plan to extend the cloth draping model with more
advanced ones [18] and we will compare different draping approaches and
parameter optimization schemes in the motion capturing setup.
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An Introduction to Interacting Simulated
Annealing

Juergen Gall, Bodo Rosenhahn, and Hans-Peter Seidel

Max-Planck Institute for Computer Science
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Summary. Human motion capturing can be regarded as an optimization problem
where one searches for the pose that minimizes a previously defined error function
based on some image features. Most approaches for solving this problem use iterative
methods like gradient descent approaches. They work quite well as long as they do
not get distracted by local optima. We introduce a novel approach for global opti-
mization that is suitable for the tasks as they occur during human motion capturing.
We call the method interacting simulated annealing since it is based on an inter-
acting particle system that converges to the global optimum similar to simulated
annealing. We provide a detailed mathematical discussion that includes convergence
results and annealing properties. Moreover, we give two examples that demonstrate
possible applications of the algorithm, namely a global optimization problem and
a multi-view human motion capturing task including segmentation, prediction, and
prior knowledge. A quantative error analysis also indicates the performance and the
robustness of the interacting simulated annealing algorithm.

13.1 Introduction

13.1.1 Motivation

Optimization problems arise in many applications of computer vision. In pose
estimation, e.g. [28], and human motion capturing, e.g. [31], functions are
minimized at various processing steps. For example, the marker-less motion
capture system [26] minimizes in a first step an energy function for the seg-
mentation. In a second step, correspondences between the segmented image
and a 3D model are established. The optimal pose is then estimated by min-
imizing the error given by the correspondences. These optimization problems
also occur, for instance, in model fitting [17, 31]. The problems are mostly
solved by iterative methods as gradient descent approaches. The methods
work very well as long as the starting point is near the global optimum, how-
ever, they get easily stuck in a local optimum. In order to deal with it, several
random selected starting points are used and the best solution is selected in
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the hope that at least one of them is near enough to the global optimum,
cf. [26]. Although it improves the results in many cases, it does not ensure
that the global optimum is found.

In this chapter, we introduce a global optimization method based on an
interacting particle system that overcomes the dilemma of local optima and
that is suitable for the optimization problems as they arise in human motion
capturing. In contrast to many other optimization algorithms, a distribution
instead of a single value is approximated by a particle representation similar to
particle filters [10]. This property is beneficial, particularly, for tracking where
the right parameters are not always exact at the global optimum depending
on the image features that are used.

13.1.2 Related Work

A popular global optimization method inspired by statistical mechanics is
known as simulated annealing [14,18]. Similar to our approach, a function V ≥
0 interpreted as energy is minimized by means of an unnormalized Boltzmann–
Gibbs measure that is defined in terms of V and an inverse temperature β >
0 by

g(dx) = exp (−β V (x)) λ(dx), (13.1)

where λ is the Lebesgue measure. This measure has the property that the
probability mass concentrates at the global minimum of V as β → ∞.

The key idea behind simulated annealing is taking a random walk through
the search space while β is successively increased. The probability of accepting
a new value in the space is given by the Boltzmann–Gibbs distribution. While
values with less energy than the current value are accepted with probability
one, the probability that values with higher energy are accepted decreases as
β increases. Other related approaches are fast simulated annealing [30] using
a Cauchy–Lorentz distribution and generalized simulated annealing [32] based
on Tsallis statistics.

Interacting particle systems [19] approximate a distribution of interest by
a finite number of weighted random variables X(i) called particles. Provided
that the weights Π(i) are normalized such that

∑
Π(i) = 1, the set of weighted

particles determines a random probability measures by

n∑
i=1

Π(i)δX(i) . (13.2)

Depending on the weighting function and the distribution of the particles, the
measure converges to a distribution η as n tends to infinity. When the par-
ticles are identically independently distributed according to η and uniformly
weighted, i.e. Π(i) = 1/n, the convergence follows directly from the law of
large numbers [3].

Interacting particle systems are mostly known in computer vision as par-
ticle filter [10] where they are applied for solving nonlinear, non-Gaussian



13 Interacting Simulated Annealing 321

Resampling:

particle
weighted particle
weighting function

Weighting:

Diffusion:

Fig. 13.1. Operation of an interacting particle system. After weighting the particles
(black circles), the particles are resampled and diffused (gray circles).

filtering problems. However, these systems also apply for trapping analysis,
evolutionary algorithms, statistics [19], and optimization as we demonstrate
in this chapter. They usually consist of two steps as illustrated in Figure 13.1.
During a selection step, the particles are weighted according to a weighting
function and then resampled with respect to their weights, where particles
with a great weight generate more offspring than particles with lower weight.
In a second step, the particles mutate or are diffused.

13.1.3 Interaction and Annealing

Simulated annealing approaches are designed for global optimization, i.e., for
searching the global optimum in the entire search space. Since they are not ca-
pable of focusing the search on some regions of interest in dependency on the
previous visited values, they are not suitable for tasks in human motion cap-
turing. Our approach, in contrast, is based on an interacting particle system
that uses Boltzmann–Gibbs measures (13.1) similar to simulated annealing.
This combination ensures not only the annealing property as we will show,
but also exploits the distribution of the particles in the space as measure for
the uncertainty in an estimate. The latter allows an automatic adaption of the
search on regions of interest during the optimization process. The principle of
the annealing effect is illustrated in Figure 13.2.

A first attempt to fuse interaction and annealing strategies for human
motion capturing has become known as annealed particle filter [9]. Even
though the heuristic is not based on a mathematical background, it already
indicates the potential of such combination. Indeed, the annealed particle
filter can be regarded as a special case of interacting simulated annealing
where the particles are predicted for each frame by a stochastic process, see
Section 13.3.1.
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Fig. 13.2. Illustration of the annealing effect with three runs. Due to annealing,
the particles migrate towards the global maximum without getting stuck in the local
maximum.

13.1.4 Outline

The interacting annealing algorithm is introduced in Section 13.3.1 and its as-
ymptotic behavior is discussed in Section 13.3.2. The given convergence results
are based on Feynman–Kac models [19] which are outlined in Section 13.2.
Since a general treatment including proofs is out of the scope of this intro-
duction, we refer the interested reader to [11] or [19]. While our approach is
evaluated for a standard global optimization problem in Section 13.4.1, Sec-
tion 13.4.2 demonstrates the performance of interacting simulated annealing
in a complete marker-less human motion capture system that includes seg-
mentation, pose prediction, and prior knowledge.

13.1.5 Notations

We always regard E as a subspace of Rd, and let B(E) denote its Borel σ-
algebra. B(E) denotes the set of bounded measurable functions, δx is the
Dirac measure concentrated in x ∈ E, ‖ · ‖2 is the Euclidean norm, and ‖ · ‖∞
is the well-known supremum norm. Let f ∈ B(E), μ be a measure on E, and
let K be a Markov kernel on E.1 We write

〈μ, f〉 =
∫

E

f(x)μ(dx), 〈μ,K〉(B) =
∫

E

K(x,B)μ(dx) for B ∈ B(E).

1 A Markov kernel is a function K : E × B(E) → [0,∞] such that K(·, B) is
B(E)-measurable ∀B and K(x, ·) is a probability measure ∀x. An example of a
Markov kernel is given in Equation (13.12). For more details on probability theory
and Markov kernels, we refer to [3].
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Furthermore, U [0, 1] denotes the uniform distribution on the interval [0, 1] and

osc(ϕ) := sup
x,y∈E

{|ϕ(x) − ϕ(y)|} . (13.3)

is an upper bound for the oscillations of f .

13.2 Feynman–Kac Model

Let (Xt)t∈N0 be an E-valued Markov process with family of transition kernels
(Kt)t∈N0 and initial distribution η0. We denote by Pη0 the distribution of the
Markov process, i.e., for t ∈ N0,

Pη0 (d(x0, x1, . . . , xt)) = Kt−1(xt−1, dxt) . . .K0(x0, dx1) η0(dx0),

and by Eη0 [·] the expectation with respect to Pη0 . The sequence of distribu-
tions (ηt)t∈N0 on E defined for any ϕ ∈ B(E) and t ∈ N0 as

〈ηt, ϕ〉 :=
〈γt, ϕ〉
〈γt, 1〉

, 〈γt, ϕ〉 := Eη0

[
ϕ (Xt) exp

(
−

t−1∑
s=0

βs V (Xs)

)]
,

is called the Feynman–Kac model associated with the pair (exp(−βt V ),Kt).
The Feynman–Kac model as defined above satisfies the recursion relation

ηt+1 = 〈Ψt(ηt),Kt〉, (13.4)

where the Boltzmann–Gibbs transformation Ψt is defined by

Ψt (ηt) (dyt) =
Eη0

[
exp
(
−∑t−1

s=0 βs V (Xs)
)]

Eη0

[
exp
(
−∑t

s=0 βs V (Xs)
)] exp (−βt Vt(yt)) ηt(dyt).

The particle approximation of the flow (13.4) depends on a chosen family of
Markov transition kernels (Kt,ηt

)t∈N0 satisfying the compatibility condition

〈Ψt (ηt) ,Kt〉 := 〈ηt,Kt,ηt
〉.

A family (Kt,ηt
)t∈N0 of kernels is not uniquely determined by these conditions.

As in [19, Chapter 2.5.3], we choose

Kt,ηt
= St,ηt

Kt, (13.5)

where

St,ηt
(xt, dyt) = εt exp (−βt Vt(xt)) δxt

(dyt)
+ (1 − εt exp (−βt Vt(xt))) Ψt (ηt) (dyt), (13.6)

with εt ≥ 0 and εt ‖exp(−βt V )‖∞ ≤ 1. The parameters εt may depend on the
current distribution ηt.
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13.3 Interacting Simulated Annealing

Similar to simulated annealing, one can define an annealing scheme 0 ≤ β0 ≤
β1 ≤ . . . ≤ βt in order to search for the global minimum of an energy function
V . Under some conditions that will be stated in Section 13.3.2, the flow of
the Feynman–Kac distribution becomes concentrated in the region of global
minima of V as t goes to infinity. Since it is not possible to sample from the
distribution directly, the flow is approximated by a particle set as it is done by
a particle filter. We call the algorithm for the flow approximation interacting
simulated annealing (ISA).

13.3.1 Algorithm

The particle approximation for the Feynman–Kac model is completely de-
scribed by the Equation (13.5). The particle system is initialized by n identi-
cally, independently distributed random variables X

(i)
0 with common law η0

determining the random probability measure ηn
0 :=

∑n
i=1 δX

(i)
0
/n. Since Kt,ηt

can be regarded as the composition of a pair of selection and mutation Markov
kernels, we split the transitions into the following two steps

ηn
t

Selection−−−−−−−−→ η̌n
t

Mutation−−−−−−−−→ ηn
t+1,

where

ηn
t :=

1
n

n∑
i=1

δ
X

(i)
t

, η̌n
t :=

1
n

n∑
i=1

δ
X̌

(i)
t

.

During the selection step each particle X
(i)
t evolves according to the Markov

transition kernel St,ηn
t
(X(i)

t , ·). That means X
(i)
t is accepted with probability

εt exp(−βt V (X(i)
t )), (13.7)

and we set X̌(i)
t = X

(i)
t . Otherwise, X̌(i)

t is randomly selected with distribution

n∑
i=1

exp(−βt V (X(i)
t ))∑n

j=1 exp(−βt V (X(j)
t ))

δ
X

(i)
t

.

The mutation step consists in letting each selected particle X̌
(i)
t evolve ac-

cording to the Markov transition kernel Kt(X̌
(i)
t , ·).

There are several ways to choose the parameter εt of the selection ker-
nel (13.6) that defines the resampling procedure of the algorithm, cf. [19].
If

εt := 0 ∀t, (13.8)

the selection can be done by multinomial resampling. Provided that2

2 The inequality satisfies the condition εt ‖exp(−βt V )‖∞ ≤ 1 for Equation (13.6).
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Algorithm 6 Interacting Simulated Annealing Algorithm
Requires: parameters (εt)t∈N0 , number of particles n, initial distribution η0, energy
function V , annealing scheme (βt)t∈N0 and transitions (Kt)t∈N0

1. Initialization
• Sample x

(i)
0 from η0 for all i

2. Selection
• Set π(i) ← exp(−βt V (x

(i)
t )) for all i

• For i from 1 to n:
Sample κ from U [0, 1]
If κ ≤ εtπ

(i) then
� Set x̌

(i)
t ← x

(i)
t

Else
� Set x̌

(i)
t ← x

(j)
t with probability π(j)∑n

k=1
π(k)

3. Mutation
• Sample x

(i)
t+1 from Kt(x̌

(i)
t , ·) for all i and go to step 2

n ≥ sup
t

(exp(βt osc(V )) ,

another selection kernel is given by

εt(ηt) :=
1

n 〈ηt, exp(−βt V )〉 . (13.9)

In this case the expression εtπ
(i) in Algorithm 6 is replaced by π(i)/

∑n
k=1 π

(k).
A third kernel is determined by

εt(ηt) :=
1

inf {y ∈ R : ηt ({x ∈ E : exp(−βt V (x)) > y}) = 0} , (13.10)

yielding the expression π(i)/max1≤k≤n π(k) instead of εtπ(i).
Pierre del Moral showed in [19, Chapter 9.4] that for any t ∈ N0 and

ϕ ∈ B(E) the sequence of random variables
√
n(〈ηn

t , ϕ〉 − 〈ηt, ϕ〉)

converges in law to a Gaussian random variable W when the selection kernel
(13.6) is used to approximate the flow (13.4). Moreover, it turns out that when
(13.9) is chosen, the variance of W is strictly smaller than in the case with
εt = 0.

We remark that the annealed particle filter [9] relies on interacting simu-
lated annealing with εt = 0. The operation of the method is illustrated by

ηn
t

Prediction−−−−−−−−→ η̂n
t+1

ISA−−−−−−−−→ ηn
t+1.

The ISA is initialized by the predicted particles X̂(i)
t+1 and performs M times

the selection and mutation steps. Afterwards the particles X
(i)
t+1 are obtained
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by an additional selection. This shows that the annealed particle filter uses a
simulated annealing principle to locate the global minimum of a function V
at each time step.

13.3.2 Convergence

This section discusses the asymptotic behavior of the interacting simulated
annealing algorithm. For this purpose, we introduce some definitions in ac-
cordance with [19] and [15].

Definition 1. A kernel K on E is called mixing if there exists a constant
0 < ε < 1 such that

K(x1, ·) ≥ εK(x2, ·) ∀x1, x2 ∈ E. (13.11)

The condition can typically only be established when E ⊂ R
d is a bounded

subset, which is the case in many applications like human motion capturing.
For example the (bounded) Gaussian distribution on E

K(x,B) :=
1
Z

∫
B

exp
(
−1

2
(x− y)T Σ−1 (x− y)

)
dy, (13.12)

where Z :=
∫

E
exp(− 1

2 (x − y)T Σ−1 (x − y)) dy, is mixing if and only if E
is bounded. Moreover, a Gaussian with a high variance satisfies the mixing
condition with a larger ε than a Gaussian with lower variance.

Definition 2. The Dobrushin contraction coefficient of a kernel K on E is
defined by

β(K) := sup
x1,x2∈E

sup
B∈B(E)

|K(x1, B) −K(x2, B)| . (13.13)

Furthermore, β(K) ∈ [0, 1] and β(K1K2) ≤ β(K1)β(K2).

When the kernel M is a composition of several mixing Markov kernels, i.e.,
M := KsKs+1 . . .Kt, and each kernel Kk satisfies the mixing condition for
some εk, the Dobrushin contraction coefficient can be estimated by β(M) ≤∏t

k=s(1 − εk).
The asymptotic behavior of the interacting simulated annealing algorithm

is affected by the convergence of the flow of the Feynman–Kac distribution
(13.4) to the region of global minima of V as t tends to infinity and by the
convergence of the particle approximation to the Feynman–Kac distribution
at each time step t as the number of particles n tends to infinity.

Convergence of the Flow

We suppose that Kt = K is a Markov kernel satisfying the mixing condition
(13.11) for an ε ∈ (0, 1) and osc(V ) < ∞. A time mesh is defined by
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t(n) := n(1 +  c(ε)!) c(ε) := (1 − ln(ε/2))/ε2 for n ∈ N0. (13.14)

Let 0 ≤ β0 ≤ β1 . . . be an annealing scheme such that βt = βt(n+1) is constant
in the interval (t(n), t(n + 1)]. Furthermore, we denote by η̌t the Feynman–
Kac distribution after the selection step, i.e. η̌t = Ψt(ηt). According to [19,
Proposition 6.3.2], we have

Theorem 1. Let b ∈ (0, 1) and βt(n+1) = (n + 1)b. Then for each δ > 0

lim
n→∞ η̌t(n) (V ≥ V� + δ) = 0,

where V� = sup{v ≥ 0; V ≥ v a.e.}.

The rate of convergence is d/n(1−b) where d is increasing with respect to
b and c(ε) but does not depend on n as given in [19, Theorem 6.3.1]. This
theorem establishes that the flow of the Feynman–Kac distribution η̌t becomes
concentrated in the region of global minima as t → +∞.

Convergence of the Particle Approximation

Del Moral established the following convergence theorem [19, Theorem 7.4.4].

Theorem 2. For any ϕ ∈ B(E),

Eη0

[∣∣〈ηn
t+1, ϕ〉 − 〈ηt+1, ϕ〉

∣∣] ≤ 2 osc(ϕ)√
n

(
1 +

t∑
s=0

rsβ(Ms)

)
,

where

rs := exp

(
osc(V )

t∑
r=s

βr

)
,

Ms := KsKs+1 . . .Kt,

for 0 ≤ s ≤ t.

Assuming that the kernels Ks satisfy the mixing condition with εs, we get
a rough estimate for the number of particles

n ≥ 4 osc(ϕ)2

δ2

(
1 +

t∑
s=0

{
exp

(
osc(V )

t∑
r=s

βr

)
t∏

k=s

(1 − εk)

})2

(13.15)

needed to achieve a mean error less than a given δ > 0.
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Optimal Transition Kernel

The mixing condition is not only essential for the convergence result of the flow
as stated in Theorem 1 but also influences the time mesh by the parameter
ε. In view of Equation (13.14), kernels with ε close to 1 are preferable, e.g.,
Gaussian kernels on a bounded set with a very high variance. The right-
hand side of (13.15) can also be minimized if Markov kernels Ks are chosen
such that the mixing condition is satisfied for a εs close to 1, as shown in
Figure 13.3. However, we have to consider two facts. First, the inequality in
Theorem 2 provides an upper bound of the accumulated error of the particle
approximation up to time t+ 1. It is clear that the accumulation of the error
is reduced when the particles are highly diffused, but it also means that the
information carried by the particles from the previous time steps is mostly lost
by the mutation. Secondly, we cannot sample from the measure η̌t directly,
instead we approximate it by n particles. Now the following problem arises.
The mass of the measure concentrates on a small region of E on one hand
and, on the other hand, the particles are spread over E if ε is large. As a
result we get a degenerated system where the weights of most of the particles
are zero and thus the global minima are estimated inaccurately, particularly
for small n. If we choose a kernel with small ε in contrast, the convergence
rate of the flow is very slow. Since neither of them is suitable in practice, we
suggest a dynamic variance scheme instead of a fixed kernel K.

It can implemented by Gaussian kernels Kt with covariance matrices Σt

proportional to the sample covariance after resampling. That is, for a constant
c > 0,

Σt :=
c

n− 1

n∑
i=1

(x(i)
t − μt)ρ (x(i)

t − μt)T
ρ , μt :=

1
n

n∑
i=1

x
(i)
t , (13.16)

where ((x)ρ)k = max(xk, ρ) for a ρ > 0. The value ρ ensures that the variance
does not become zero. The elements off the diagonal are usually set to zero,
in order to reduce computation time.

Fig. 13.3. Impact of the mixing condition satisfied for εs = ε. Left: Parameter
c(ε) of the time mesh (13.14). Right: Rough estimate for the number of particles
needed to achieve a mean error less than δ = 0.1.
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Optimal Parameters

The computation cost of the interacting simulated annealing algorithm with
n particles and T annealing runs is O(nT ), where

nT := n · T . (13.17)

While more particles give a better particle approximation of the Feynman–
Kac distribution, the flow becomes more concentrated in the region of global
minima as the number of annealing runs increases. Therefore, finding the
optimal values is a trade-off between the convergence of the flow and the
convergence of the particle approximation provided that nT is fixed.

Another important parameter of the algorithm is the annealing scheme.
The scheme given in Theorem 1 ensures convergence for any energy function V
– even for the worst one in the sense of optimization – as long as osc(V ) < ∞
but is too slow for most applications, as it is the case for simulated annealing.
In our experiments the schemes

βt = ln(t + b) for some b > 1 (logarithmic), (13.18)
βt = (t + 1)b for some b ∈ (0, 1) (polynomial) (13.19)

performed well. Note that in contrast to the time mesh (13.14) the schemes
are not anymore constant on a time interval.

Even though a complete evaluation of the various parameters is out of the
scope of this introduction, the examples given in the following section demon-
strate settings that perform well, in particular for human motion capturing.

13.4 Examples

13.4.1 Global Optimization

The Ackley function [1, 2]

f(x) = −20 exp

⎛⎝−0.2

√√√√1
d

d∑
i=1

x2
i

⎞⎠− exp

(
1
d

d∑
i=1

cos(2π xi)

)
+ 20 + e

is a widely used multimodal test function for global optimization algorithms.
As one can see from Figure 13.4, the function has a global minimum at (0, 0)
that is surrounded by several local minima. The problem consists of finding
the global minimum in a bounded subspace E ⊂ R

d with an error less than a
given δ > 0 where the initial distribution is the uniform distribution on E.

In our experiments, the maximal number of time steps were limited by
999, and we set E = [−4, 4]× [−4, 4] and δ = 10−3. The interacting simulated
annealing algorithm was stopped when the Euclidean distance between the
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Fig. 13.4. Ackley function. Unique global minimum at (0, 0) with several local
minima around it.

Fig. 13.5. Average time steps needed to find global minimum with error less than
10−3 with respect to the parameters b and c.

global minimum and its estimate was less than δ or when the limit of time
steps was exceeded. All simulations were repeated 50 times and the average
number of time steps needed by ISA was used for evaluating the performance
of the algorithm. Depending on the chosen selection kernel (13.8), (13.9), and
(13.10), we write ISAS1, ISAS2, and ISAS3, respectively.

Using a polynomial annealing scheme (13.19), we evaluated the average
time steps needed by the ISAS1 with 50 particles to find the global minimum
of the Ackley function. The results with respect to the parameter of the an-
nealing scheme, b ∈ [0.1, 0.999], and the parameter of the dynamic variance
scheme, c ∈ [0.1, 3], are given in Figure 13.5. The algorithm performed best
with a fast increasing annealing scheme, i.e., b > 0.9, and with c in the range
0.5–1.0. The plots in Figure 13.5 also reveal that the annealing scheme has
greater impact on the performance than the factor c. When the annealing
scheme increases slowly, i.e., b < 0.2, the global minimum was actually not
located within the given limit for all 50 simulations.

The best results with parameters b and c for ISAS1, ISAS2, and ISAS3

are listed in Table 13.1. The optimal parameters for the three selection kernels
are quite similar and the differences of the average time steps are marginal.
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Table 13.1. Parameters b and c with lowest average time t for different selection
kernels.

Ackley Ackley with noise

ISAS1 ISAS2 ISAS3 ISAS1 ISAS2 ISAS3

b 0.993 0.987 0.984 0.25 0.35 0.27
c 0.8 0.7 0.7 0.7 0.7 0.9
t 14.34 15.14 14.58 7.36 7.54 7.5

Fig. 13.6. Left: Average time steps needed to find global minimum with respect
to number of particles. Right: Computation cost.

Table 13.2. Number of particles with lowest average computation cost for different
selection kernels.

Ackley Ackley with noise

ISAS1 ISAS2 ISAS3 ISAS1 ISAS2 ISAS3

n 30 30 28 50 50 26
t 22.4 20.3 21.54 7.36 7.54 12.54
nt 672 609 603.12 368 377 326.04

In a second experiment, we fixed the parameters b and c, where we used
the values from Table 13.1, and varied the number of particles in the range
4–200 with step size 2. The results for ISAS1 are shown in Figure 13.6. While
the average of time steps declines rapidly for n ≤ 20, it is hardly reduced
for n ≥ 40. Hence, nt and thus the computation cost are lowest in the range
20–40. This shows that a minimum number of particles are required to achieve
a success rate of 100%, i.e., the limit was not exceeded for all simulations. In
this example, the success rate was 100% for n ≥ 10. Furthermore, it indicates
that the average of time steps is significantly higher for n less than the optimal
number of particles. The results for ISAS1, ISAS2, and ISAS3 are quite
similar. The best results are listed in Table 13.2.

The ability of dealing with noisy energy functions is one of the strength
of ISA as we will demonstrate. This property is very usefull for applications
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Fig. 13.7. Left: Ackley function distorted by Gaussian noise with standard devi-
ation 0.5. Right: Average time steps needed to find global minimum with error less
than 10−2 with respect to the parameters b and c.

where the measurement of the energy of a particle is distorted by noise. On
the left-hand side of Figure 13.7, the Ackley function is distorted by Gaussian
noise with standard deviation 0.5, i.e.,

fW (x) := max {0, f(x) + W} , W ∼ N(0, 0.52).

As one can see, the noise deforms the shape of the function and changes the
region of global minima. In our experiments, the ISA was stopped when the
true global minimum at (0, 0) was found with an accuracy of δ = 0.01.

For evaluating the parameters b and c, we set n = 50. As shown on the
right hand side of Figure 13.7, the best results were obtained by annealing
schemes with b ∈ [0.22, 0.26] and c ∈ [0.6, 0.9]. In contrast to the undistorted
Ackley function, annealing schemes that increase slowly performed better than
the fast one. Indeed, the success rate dropped below 100% for b ≥ 0.5. The
reason is obvious from the left-hand side of Figure 13.7. Due to the noise, the
particles are more easily distracted and a fast annealing scheme diminishes
the possibility of escaping from the local minima. The optimal parameters for
the dynamic variance scheme are hardly affected by the noise.

The best parameters for ISAS1, ISAS2, and ISAS3 are listed in the Tables
13.1 and 13.2. Except for ISAS3, the optimal number of particles is higher
than it is the case for the simulations without noise. The minimal number of
particles to achieve a success rate of 100% also increased, e.g., 28 for ISAS1.
We remark that ISAS3 required the least number of particles for a complete
success rate, namely 4 for the undistorted energy function and 22 in the noisy
case.

We finish this section by illustrating two examples of energy function where
the dynamic variance schemes might not be suitable. On the left-hand side of
Figure 13.8, an energy function with shape similar to the Ackley function is
drawn. The dynamic variance schemes perform well for this type of function
with an unique global minimum with several local minima around it. Due to
the scheme, the search focuses on the region near the global minimum after
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(a) (b) (c)

Fig. 13.8. Different cases of energy functions. (a) Optimal for dynamic variance
schemes. An unique global minimum with several local minima around it. (b) Several
global minima that are widely separated. This yields a high variance even in the case
that the particles are near to the global minima. (c) The global minimum is a small
peak far away from a broad basin. When all particles fall into the basin, the dynamic
variance schemes focus the search on the basin.

some time steps. The second function, see Figure 8(b), has several, widely
separated global minima yielding a high variance of the particles even in the
case that the particles are near to the global minima. Moreover, when the
region of global minima is regarded as a sum of Dirac measures, the mean
is not essentially a global minimum. In the last example shown on the right
hand side of Figure 13.8, the global minimum is a small peak far away from
a broad basin with a local minimum. When all particles fall into the basin,
the dynamic variance schemes focus the search on the region near the local
minimum and it takes a long time to discover the global minimum.

In most optimization problems arising in the field of computer vision,
however, the first case occurs where the dynamic variance schemes perform
well. One application is human motion capturing which we will discuss in the
next section.

13.4.2 Human Motion Capture

In our second experiment, we apply the interacting simulated annealing alg-
orithm to model-based 3D tracking of the lower part of a human body, see
Figure 13.9(a). This means that the 3D rigid body motion (RBM) and the
joint angles, also called the pose, are estimated by exploiting the known 3D
model of the tracked object. The mesh model illustrated in Figure 13.9(d)
has 18 degrees of freedom (DoF), namely 6 for the rigid body motion and 12
for the joint angles of the hip, knees, and feet. Although a marker-less motion
capture system is discussed, markers are also sticked to the target object in
order to provide a quantitative comparison with a commercial marker-based
system.

Using the extracted silhouette as shown in Figure 13.9(b), one can define
an energy function V which describes the difference between the silhouette
and an estimated pose. The pose that fits the silhouette best takes the global
minimum of the energy function, which is searched by the ISA. The estimated
pose projected onto the image plane is displayed in Figure 13.9(c).
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Fig. 13.9. From left to right: (a) Original image. (b) Silhouette. (c) Estimated
pose. (d) 3D model.

Pose Representation

There are several ways to represent the pose of an object, e.g., Euler angles,
quaternions [16], twists [20], or the axis-angle representation. The ISA re-
quires from the representation that primarily the mean but also the variance
can be at least well approximated. For this purpose, we have chosen the axis-
angle representation of the absolute rigid body motion M given by the 6D
vector (θω, t) with

ω = (ω1, ω2, ω3), ‖ω‖2 = 1 and t = (t1, t2, t3).

Using the exponential, M is expressed by

M =
(

exp (θω̂) t
0 1

)
, ω̂ =

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ . (13.20)

While t is the absolute position in the world coordinate system, the rotation
vector θω describes a rotation by an angle θ ∈ R about the rotation axis ω. The
function exp (θω̂) can be efficiently computed by the Rodriguez formula [20].

Given a rigid body motion defined by a rotation matrix R ∈ SO(3) and a
translation vector t ∈ R

3, the rotation vector is constructed according to [20]
as follows: When R is the identity matrix, θ is set to 0. For the other case, θ
and the rotation axis ω are given by

θ = cos−1

(
trace(R) − 1

2

)
, ω =

1
2 sin(θ)

⎛⎝ r32 − r23
r13 − r31
r21 − r12

⎞⎠ . (13.21)

We write log(R) for the inverse mapping of the exponential.
The mean of a set of rotations ri in the axis-angle representation can be

computed by using the exponential and the logarithm as described in [22,23].
The idea is to find a geodesic on the Riemannian manifold determined by the
set of 3D rotations. When the geodesic starting from the mean rotation in the
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manifold is mapped by the logarithm onto the tangent space at the mean, it
is a straight line starting at the origin. The tangent space is called exponential
chart .

Hence, using the notations

r2  r1 = log (exp(r2) · exp(r1)) , r−1
1 = log

(
exp(r1)T

)
for the rotation vectors r1 and r2, the mean rotation r̄ satisfies∑

i

(
r̄−1  ri

)
= 0. (13.22)

Weighting each rotation with πi, yields the least squares problem:
1
2

∑
i

πi

∥∥r̄−1  ri

∥∥2
2
→ min. (13.23)

The weighted mean can thus be estimated by

r̂t+1 = r̂t  

(∑
i πi

(
r̂−1
t  ri

)∑
i πi

)
. (13.24)

The gradient descent method takes about 5 iterations until it converges.
The variance and the normal density on a Riemannian manifold can also be

approximated, cf. [24]. Since, however, the variance is only used for diffusing
the particles, a very accurate approximation is not needed. Hence, the variance
of a set of rotations ri is calculated in the Euclidean space.3

The twist representation used in [7,26] and in Chapters 11 and 12 is quite
similar. Instead of a separation between the translation t and the rotation
r, it describes a screw motion where the motion velocity θ also affects the
translation. A twist ξ̂ ∈ se(3) is represented by

θξ̂ = θ

(
ω̂ v
0 0

)
, (13.25)

where exp(θξ̂) is a rigid body motion.
The logarithm of a rigid body motion M ∈ SE(3) is the following trans-

formation:
θω = log(R), v = A−1t, (13.26)

where
A = (I − exp(θω̂))ω̂ + ωωT θ (13.27)

is obtained from the Rodriguez formula. This follows from the fact, that the
two matrices which comprise A have mutually orthogonal null spaces when
θ �= 0. Hence, Av = 0 ⇔ v = 0.

We remark that the two representations are identical for the joints where
only a rotation around a known axis is performed. Furthermore, a linearization
is not needed for the ISA in contrast to the pose estimation as described in
Chapters 11 and 12.
3 se(3) is the Lie algebra that corresponds to the Lie group SE(3).
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Pose Prediction

The ISA can be combined with a pose prediction in two ways. When the
dynamics are modelled by a Markov process for example, the particles of the
current frame can be stored and predicted for the next frame according to
the process as done in [12]. In this case, the ISA is already initialized by the
predicted particles. But when the prediction is time consuming or when the
history of previous poses is needed, only the estimate is predicted. The ISA is
then initialized by diffusing the particles around the predicted estimate. The
reinitialization of the particles is necessary for example when the prediction
is based on local descriptors [13] or optical flow as discussed in Chapter 11
and [5].

In our example, the pose is predicted by an autoregression that takes the
global rigid body motions Pi of the last N frames into account [13]. For this
purpose, we use a set of twists ξi = log(PiP

−1
i−1) representing the relative

motions. By expressing the local rigid body motion as a screw action, the
spatial velocity can be represented by the twist of the screw, see [20] for
details.

In order to generate a suited rigid body motion from the motion history,
a screw motion needs to be represented with respect to another coordinate
system. Let ξ̂ ∈ se(3) be a twist given in a coordinate frame A. Then for
any G ∈ SE(3), which transforms a coordinate frame A to B, is Gξ̂G−1 a
twist with the twist coordinates given in the coordinate frame B, see [20]
for details. The mapping ξ̂ �−→ Gξ̂G−1 is called the adjoint transformation
associated with G.

Let ξ1 = log(P2P
−1
1 ) be the twist representing the relative motion from

P1 to P2. This transformation can be expressed as local transformation in the
current coordinate system M1 by the adjoint transformation associated with
G = M1P

−1
1 . The new twist is then given by ξ̂′1 = Gξ̂1G

−1. The advantage
of the twist representation is now, that the twists can be scaled by a factor

P1

M1

M3

M2

P2

P3

O

ξ’1

ξ’2

ξ2

ξ1

Fig. 13.10. Transformation of rigid body motions from prior data Pi in a current
world coordinate system M1. A proper scaling of the twists results in a proper
damping.
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0 ≤ λi ≤ 1 to damp the local rigid body motion, i.e. ξ̂′i = Gλiξ̂iG
−1. For

given λi such that
∑

i λi = 1, the predicted pose is obtained by the rigid
body transformation

exp(ξ̂′N ) exp(ξ̂′N−1) . . . exp(ξ̂′1). (13.28)

Energy Function

The energy function V of a particle x, which is used for our example, depends
on the extracted silhouette and on some learned prior knowledge as in [12],
but it is defined in a different way.
Silhouette: First of all, the silhouette is extracted from an image by a level
set-based segmentation as in [8, 27]. We state the energy functional E for
convenience only and refer the reader to chapter 11 where the segmentation is
described in detail. Let Ωi be the image domain of view i and let Φi

0(x̂ ) be the
contour of the predicted pose in Ωi. In order to obtain the silhouettes for all
r views, the energy functional E(x̂, Φ1, . . . , Φr) =

∑r
i=1 E(x̂, Φi) is minimzed,

where

E(x̂, Φi) = −
∫
H(Φi) ln pi

1 + (1 −H(Φi)) ln pi
2 dx

+ ν

∫
Ωi

∣∣∇H(Φi)
∣∣ dx + λ

∫
Ωi

(
Φi − Φi

0(x̂ )
)2

dx. (13.29)

In our experiments, we weighted the smoothness term with ν = 4 and the
shape prior with λ = 0.04.

After the segmentation, 3D–2D correspondences between the 3D model
(Xi) and a 2D image (xi) are established by the projected vertices of the
3D mesh that are part of the model contour and their closest points of the
extracted contour that are determined by a combination of an iterated clos-
est point algorithm [4] and an optic flow-based shape registration [25]. More
details about the shape matching are given in Chapter 12. We write each
correspondence as pair (Xi, xi) of homogeneous coordinates.

Each image point xi defines a projection ray that can be represented as
Plücker line [20] determined by a unique vector ni and a moment mi such
that x× ni −mi = 0 for all x on the 3D line. Furthermore,

‖x× ni −mi‖2 (13.30)

is the norm of the perpendicular error vector between the line and a point
x ∈ R

3. As we already mentioned, a joint j is represented by the rotation
angle θj . Hence, we write M(ω, t) for the rigid body motion and M(θj) for
the joints. Furthermore, we have to consider the kinematic chain of articulated
objects. Let Xi be a point on the limb ki whose position is influenced by si

joints in a certain order. The inverse order of these joints is then given by the
mapping ιki

, e.g., a point on the left shank is influenced by the left knee joint
ιki

(4) and by the three joints of the left hip ιki
(3), ιki

(2), and ιki
(1).
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Hence, the pose estimation consists of finding a pose x such that the error

errS(x, i) :=
∥∥∥∥(M(ω, t)M(θιki

(1)) . . .M(θιki
(si))Xi

)
3×1

×ni −mi

∥∥∥∥
2

(13.31)

is minimal for all pairs, where (·)3×1 denotes the transformation from homo-
geneous coordinates back to nonhomogeneous coordinates.
Prior knowledge: Using prior knowledge about the probability of a certain
pose can stabilize the pose estimation as shown in [12] and [6]. The prior
ensures that particles representing a familiar pose are favored in problematic
situations, e.g., when the observed object is partially occluded. As discussed
in Chapter 11, the probability of the various poses is learned from N training
samples, where the density is estimated by a Parzen–Rosenblatt estimator [21,
29] with a Gaussian kernel

ppose(x) =
1

(2π σ2)d/2 N

N∑
i=1

exp
(
−‖xi − x‖2

2

2σ2

)
. (13.32)

In our experiments, we chose the window size σ as the maximum second
nearest neighbor distance between all training samples as in [12].

Incorporating the learned probability of the poses in the energy function
has additional advantages. First, it already incorporates correlations between
the parameters of a pose – and thus of a particle – yielding an energy function
that is closer to the model and the observed object. Moreover, it can be
regarded as a soft constraint that includes anatomical constraints, e.g., by
the limited freedom of joints movement, and that prevents the estimates from
self-intersections since unrealistic and impossible poses cannot be contained
in the training data.

Altogether, the energy function V of a particle x is defined by

V (x) :=
1
l

l∑
i=1

errS(x, i)2 − η ln(ppose(x)), (13.33)

where l is the number of correspondences. In our experiments, we set η = 8.

Results

In our experiments, we tracked the lower part of a human body using four cal-
ibrated and synchronized cameras. The walking sequence was simultaneously
captured by a commercial marker-based system4 allowing a quantitative error
analysis. The training data used for learning ppose consisted of 480 samples
that were obtained from walking sequences. The data was captured by the
commercial system before recording the test sequence that was not contained
in the training data.
4 Motion Analysis system with 8 Falcon cameras.
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The ISA performed well for the sequence consisting of 200 frames using a
polynomial annealing scheme with b = 0.7, a dynamic variance scheme with
c = 0.3, and the selection kernel (13.9). Results are given in Figure 13.11
where the diagram shows a comparison of the estimated knee-joint angles
with the marker based system.

The convergence of the particles towards the pose with the lowest energy
is illustrated for one frame in Figure 13.12. Moreover, it shows that variance
of the particles decreases with an increasing number of annealing steps. This
can also be seen from Figure 13.13 where the standard deviations for four
parameters, which are scaled by c, are plotted. While the variances of the hip
joint and of the knee joint decline rapidly, the variance of the ankle increases

Fig. 13.11. Left: Results for a walking sequence captured by four cameras (200
frames). Right: The joint angles of the right and left knee in comparison with a
marker based system.

Fig. 13.12. Weighted particles at t = 0, 1, 2, 4, 8, and 14 of ISA. Particles with
a higher weight are brighter, particles with a lower weight are darker. The particles
converge to the pose with the lowest energy as t increases.
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(a) Z-coordinate. (b) Hip. (c) Knee. (d) Foot.

Fig. 13.13. Variance of the particles during ISA. The scaled standard deviations
for the z-coordinate of the position and for three joint angles are given. The variances
decrease with an increasing number of annealing steps.

Fig. 13.14. Left: Energy of estimate for walking sequence (200 frames). Right:
Error of estimate (left and right knee).

for the first steps before it decreases. This behavior results from the kinematic
chain of the legs. Since the ankle is the last joint in the chain, the energy for
a correct ankle is only low when also the previous joints of the chain are well
estimated.

On the right hand side of Figure 13.14, the energy of the estimate during
tracking is plotted. We also plotted the root-mean-square error of the esti-
mated knee-angles for comparison where we used the results from the marker
based system as ground truth with an accuracy of 3 degrees. For n = 250 and
T = 15, we achieved an overall root-mean-square error of 2.74 degrees. The
error was still below 3 degrees with 375 particles and T = 7, i.e., nT = 2625.
With this setting, the ISA took 7–8 s for approximately 3900 correspondences
that were established in the 4 images of one frame. The whole system including
segmentation, took 61 s for one frame. For comparison, the iterative method
as used in Chapter 12 took 59 s with an error of 2.4 degrees. However, we have
to remark that for this sequence the iterative method performed very well.
This becomes clear from the fact that no additional random starting points
were needed. Nevertheless, it demonstrates that the ISA can keep up even in
situations that are perfect for iterative methods.
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Fig. 13.15. Left: Random pixel noise. Right: Occlusions by random rectangles.

Fig. 13.16. Estimates for a sequence distorted by 70% random pixel noise. One
view of frames 35, 65, 95, 125, 155, and 185 is shown.

Figures 13.16 and 13.17 show the robustness in the presence of noise and
occlusions. For the first sequence, each frame was independently distorted by
70% pixel noise, i.e., each pixel value was replaced with probability 0.7 by a
value uniformly sampled from the interval [0, 255]. The second sequence was
distorted by occluding rectangles of random size, position, and gray value,
where the edge lengths were in the range from 1 to 40. The knee angles
are plotted in Figure 13.15. The root mean-square errors were 2.97 degrees,
4.51 degrees, and 5.21 degrees for 50% noise, 70% noise, and 35 occluding
rectangles, respectively.
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Fig. 13.17. Estimates for a sequence with occlusions by 35 rectangles with random
size, color, and position. One view of frames 35, 65, 95, 125, 155, and 185 is shown.

13.5 Discussion

We introduced a novel approach for global optimization, termed interacting
simulated annealing (ISA), that converges to the global optimum. It is based
on an interacting particle system where the particles are weighted accord-
ing to Boltzmann-Gibbs measures determined by an energy function and an
increasing annealing scheme.

The variance of the particles provides a good measure of the confidence
in the estimate. If the particles are all near the global optimum, the variance
is low and only a low diffusion of the particles is required. The estimate, in
contrast, is unreliable for particles with an high variance. This knowledge is
integrated via dynamic variance schemes that focus the search on regions of
interest depending on the confidence in the current estimate. The performance
and the potential of ISA was demonstrated by means of two applications.

The first example showed that our approach can deal with local optima and
solves the optimization problem well even for noisy measurements. However,
we also provided some limitations of the dynamic variance schemes where
standard global optimization methods might perform better. Since a com-
parison with other global optimization algorithm is out of the scope of this
introduction, this will be done in future.

The application to multi-view human motion capturing, demonstrated the
embedding of ISA into a complex system. The tracking system included
silhouette extraction by a level-set method, a pose prediction by an auto-
regression, and prior knowledge learned from training data. Providing an er-
ror analysis, we demonstrated the accuracy and the robustness of the system
in the presence of noise and occlusions. Even though we considered only a
relative simple walking sequence for demonstration, it already indicates the
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potential of ISA for human motion capturing. Indeed, a comparison with an
iterative approach revealed that on the one hand global optimization methods
cannot perform better than local optimization methods when local optima are
not problematic as it is the case for the walking sequence, but on the other
hand it also showed that the ISA can keep up with the iterative method. We
expect therefore that the ISA performs better for faster movements, more
complex motion patterns, and human models with higher degrees of freedom.
In addition, the introduced implementation of the tracking system with ISA
has one essential drawback for the performance. While the pose estimation is
performed by a global optimization method, the segmentation is still suscep-
tible to local minima since the energy function (13.29) is minimized by a local
optimization approach.

As part of future work, we will integrate ISA into the segmentation process
to overcome the local optima problem in the whole system. Furthermore, an
evaluation and a comparison with an iterative method needs to be done with
sequences of different kinds of human motions and also when the segmenta-
tion is independent of the pose estimation, e.g., as it is the case for back-
ground subtraction. Another improvement might be achieved by considering
correlations between the parameters of the particles for the dynamic variance
schemes, where an optimal trade-off between additional computation cost and
increased accuracy needs to be found.
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Summary. The accuracy of marker-less motion capture systems is comparable to
marker-based systems, however the segmentation step makes strong restrictions
to the capture environment, e.g., homogeneous clothing or background, constant
lighting, etc. In interaction environments the background is non-static, cluttered
and lighting changes often and rapidly. Stereo algorithms can provide data that
is robust with respect to lighting and background and are available in real-time.
Because speed is an issue, different optimization methods are compared, namely
Gauss-Newton(Levenberg-Marquardt), Gradient Descent, and Stochastic Meta De-
scent. Experiments on human movement show the advantages and disadvantages of
each method.

14.1 Introduction

Though video-based marker-tracking motion capture systems are state of the
art in industrial applications, they have significant disadvantages in compar-
ison with marker-less systems. In fact there is a growing need of marker-less
systems as discussed in 15.

Accurate marker-less motion capture systems rely on images that allow
segmentation of the person in the foreground. While the accuracy of such
approaches is comparable to marker-based systems [9, 21], the segmentation
step makes strong restrictions to the capture environment, e.g., homogenous
clothing or background, constant lighting, camera setups that cover a complete
circular view on the person etc. If motion of a human is to be captured in an
interaction environment, there are different conditions to be dealt with.

A general problem in interaction environments is, that the interaction
area should be well lighted for better camera images with less noise, while
the display screens should not receive any additional light. The compromise
between both is usually a rather dimly illuminated environment, as shown in
Figure (14.1), where the displayed scene is clearly visible in spite of the light
from the ceiling (more details in [11]). Additionally the background is cluttered

347
B. Rosenhahn et al. (eds.), Human Motion – Understanding, Modelling, Capture, and

Animation, 347–376.
c© 2008 Springer.



348 D. Grest and R. Koch

Fig. 14.1. The interaction area.

and non-static, which makes a segmentation of the human’s silhouette difficult
(like in Chapters 11 and 12).

Possible applications of full body motion capture in such an environment
are detection and reconstruction of specific gestures, like pointing gestures for
manipulating the virtual scene or online avatar animation for games or video
conferences.

Because the environment requires real-time motion capture to make inter-
action possible, previous approaches to pose estimation of articulated objects
are analyzed with respect to their efficiency. Most approaches rely on numer-
ical derivatives, though the motion of points in an articulated object can be
derived analytically, which increases accuracy and reduces computation time.

The framework for motion capture presented here, relies on pose estima-
tion of articulated objects. We will at first give details about the estimation
algorithm, which is not limited to applications within an interaction envi-
ronment. A Nonlinear Least Squares approach is taken, that does not only
cover previous approaches, but enhances them. Estimation from 2D–3D cor-
respondences as in the work of Rosenhahn (12, [21]) is increased in accuracy
by minimizing errors in the image plane. Numbers of parameters and com-
putation time is reduced in comparison to other minimization methods, like
Stochastic Meta Descent [3] as discussed in detail in Section 14.4.

Results on human motion estimation from depth data calculated from
stereo images is presented in the end, which shows, that even complex full
body motion involving 24 degrees of freedom can be captured from single
view stereo sequences.

14.2 Body Models

A body model for human motion capture has different important aspects,
which have to be distinguished. These are in detail:

• The geometry or skin. The most important aspect of the model is the
skin surface. This skin model does not include any aspects of motion or
animation. It just describes the appearance of the human for one specific
pose. For example each body part is a cylinder or the whole body consists
of one triangle mesh as obtained from laser scanners.
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• The skeleton which defines the motion capabilities. The skeleton gives
the degrees of freedom of the motion model by defining a hierarchy of
joints and specific bone lengths.

• Joint positions. This defines the relation of skeleton and surface skin
model. It can be thought of “where in the skin” the skeleton is positioned.
In addition to the joint positions, it has to be specified for each element
of the skin model to which joint it belongs. For “Linear Blend Skinned”
models [16], each skin surface element even belongs to multiple joints with
different weights.

These three parts define how a point on the surface moves with respect to
joint parameters, e.g., joint angles. The definition of these parts, which gives
the possibility to evaluate skin point positions for given joint values, is also
referred to as “skinning” in modelling tools like MayaTM [15] or Blender [6].
The calculation of skin point positions with defined model parts is known
in robotics as forward kinematics, because it allows to calculate the pose
of a specific object part, for example the end effector, if joint angles are
given.

The inverse kinematics is necessary for parameter estimation from observed
data with known correspondences as in this work, or for example estimating
pose from 3D marker data as provided by professional marker systems, e.g.,
from Vicon [24] or MetaMotion [17].

Most systems simplify the task by making the assumption, that all three
aspects are known for the observed human and the problem of motion capture
is reduced to estimating joint angles per frame.

The main drawback of estimating only joint angles per frame, is the limited
accuracy of motion, pose and surface reconstruction.

One example, that tries to estimate skin geometry and joint angles simul-
taneously for each video frame is the work of Plaenkers & Fua [20]. Their goal
was to very accurately reconstruct the appearance of the observed subject in
each frame, e.g., including muscle bulges or skin deformations.

In motion capture systems there exists a wide variety of models used for
estimation, their complexity and accuracy mainly depends on aspects like
type of input data, achieved degree of accuracy, application environment etc.
Examples for template skin models are from simple to complex: stick Figures
(just a skeleton without skin), cylindrical [8] body parts, ellipsoidal models
[4,20], arbitrary rigid body parts [7,21], linear blend skinned models [3]. The
complexity of the skeleton varies accordingly, with up to over 30 DOF for
hand models [3].

The template models used in the experiments here consist of rigid fixed
body parts of arbitrary shape (see Figure 14.2), because they can be rep-
resented by a scene graph, stored in VRML format and can be effectively
rendered on graphics hardware using openGL. The movement capabilities of
the models are consistent with the MPEG4 [1] specification with up to 180
DOF, while the maximum number of estimated DOF is 28.
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Fig. 14.2. One arm model with MPEG4 conformal joints as used in this work.

14.3 Pose Estimation

The pose of an object is defined here as its position and orientation with
respect to some coordinate system. The estimation is performed by calculation
of relative movement.

Capturing human motion by pose estimation of an articulated object is
done in many approaches and is motivated from inverse kinematic problems
in robotics, e.g., [18]. Solving the estimation problem by optimization of an
objective function is also very common [13, 19, 20]. Silhouette information is
usually part of this function, that tries to minimize the difference between the
model silhouette and the silhouette of the real person either by background
segmentation [19,21] or image gradient [13]. Other approaches fit a 3D human
body model to 3D point clouds calculated from depth maps. Stereo algorithms
can provide these depth images even in real-time [27].

The pose estimation methods described in this work cover also full body
inverse kinematics as known from professional modelling Tools like Maya [15]
and include methods to estimate human motion from marker-based data,
which are 3D marker positions over time and associated 3D points on the
human. While the motion estimation from marker data is included in many
modelling tools, the algorithm behind is not known.

At first pose estimation of rigid bodies is explained and extended in the
latter to articulated objects. Optimization functions and their Jacobians are
given for different type of input data. Beginning with 3D-point–3D-point cor-
respondences and extended later to 2D–3D correspondences.
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14.3.1 Rigid Bodies

A rigid body motion (RBM) in R
3 is a transformation of an object, that keeps

the distances between all points in the object constant. There are different
formulations for rigid body motions, e.g., twists [4], which use a exponential
term eψ or rotors [21], which may be seen as an extension of quaternions. Most
common are transformation matrices T ∈ R

4×4 in homogenous coordinates.
Given here is another description, which allows a straightforward application
of the Gauss-Newton method for Nonlinear Least Squares.

Rotation around Arbitrary Axis

The movement of a point around an arbitrary axis in space is a circular
movement on a plane in 3D space as shown in Figure 14.3. Consider the
normal vector ω, which describes the direction of the axis, and the point q
on the axis, which has the shortest distance to the origin, i.e., q lies on the
axis and q T ω = 0, refer to Figure 14.3.

The rotation of a point p around that axis may then be written as

Rω,q(θ,p) = p + sin θ(ω × (p − q)) + (1 − cos θ)(q − pproj)
= p + sin θ(ω × (p − q)) + (q − pproj) − cos θ(q − pproj)

(14.1)

where pproj = x− (x T ω)ω is the projection of p onto the plane through the
origin with normal ω. Note that q is also on that plane. This expression is
very useful as the derivative ∂Rω,q(θ)

∂θ is easy to calculate:

∂Rω,q(θ)
∂θ

= cos θ(ω × (p − q)) + sin θ(q − pproj) (14.2)

with the special derivative at zero:

Fig. 14.3. Rotation around an arbitrary axis in space.
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∂Rω,q(θ)
∂θ

∣∣∣∣
θ=0

= ω × (p − q) = ω × p − ω × qω (14.3)

with qω denoting an arbitrary point on the axis. The cross product ω×qω is
also known as momentum. For practical application the momentum is more
useful, because an arbitrary point on the axis is sufficient to have a valid
description. The derivative at zero gives the velocity or the tangent of the
point moving on the circle.

14.3.2 Rigid Movement by Nonlinear Least Squares

In this work estimation of pose relies on correspondences. At first, estimation
from 3D-point–3D-point correspondences (pi, p̃i) is given. Pose estimation
is understood here as calculating the rigid movement, which transforms all
points pi as close as possible to their corresponding points p̃i. For a given
set of correspondences the Nonlinear Least Squares method can be applied
to estimate that movement. A general Nonlinear Least Squares problem [5]
reads:

θ̂ = arg min
θ

m∑
i=1

(ri(θ))2

In case of pose estimation from corresponding 3D data points (pi, p̃i), as
shown in Figure 14.4, the residual functions ri are of the form:

ri(θ) = (m(θ,pi) − p̃i) (14.4)

with ri(θ) = (rix, riy, riz)T and θ = (θx, θy, θz, θα, θβ , θγ)T there are 3m real-
valued residual functions for minimization. The rigid movement function of
the point pi is

m(θ, pi) = (θx, θy, θz)T +
(
Rωx

(θα) ◦Rωy
(θβ) ◦Rωz

(θγ)
)
(pi) (14.5)

Fig. 14.4. Rigid movement of an object and corresponding points.
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where ωx, ωy, ωz denote, that the center of rotation is not necessarily the
origin of the world coordinate system. The operator “◦” denotes function
concatenation, such that the point is first rotated around ωz, then around
ωy etc.

To find the minimizer θ̂ Newton’s method can be applied, which requires
the first and second derivatives of the residual functions.

14.3.3 Jacobian for the Rigid Movement

The Jacobian matrix with its partial derivatives are given in the follow-
ing for a point set with one correspondence (p, p̃). For point sets with m
points the Jacobian is simply extended by additional rows for the additional
correspondences.

The derivative for the residual functions of rigid movement is:

∂r(θ)
∂θj

=
∂m(θ,p)

∂θj
=

∂(θx, θy, θz)T +
(
Rωx

(θα) ◦Rωy
(θβ) ◦Rωz

(θγ)
)
(p)

∂θj

(14.6)
Therefore the Jacobian for one point–point correspondence is

J =

⎡⎢⎣1 0 0 ∂mx

∂θα

∂mx

∂θβ

∂mx

∂θγ

0 1 0 ∂my

∂θα

∂my

∂θβ

∂my

∂θγ

0 0 1 ∂mz

∂θα

∂mz

∂θβ

∂mz

∂θγ

⎤⎥⎦ (14.7)

and for the derivatives at zero:

∂m(θ,p)
∂θα

∣∣∣∣
θ=0

=ωx × (p − qx)

∂m(θ,p)
∂θβ

∣∣∣∣
θ=0

=ωy × (p − qy)

∂m(θ,p)
∂θγ

∣∣∣∣
θ=0

=ωz × (p − qz)

(14.8)

Here ωx,qx denote rotation around an arbitrary point in space and ωx,ωy,ωz

are assumed orthogonal. If ωx,ωy,ωz are the world coordinate axes then the
three equations above are equal to the linearized rotation matrix as commonly
used.

The minimizer is then found by iteratively solving

θt+1 = θt −
(
JT J

)−1
JT r(θt) (14.9)

14.3.4 Relative Movement and Derivative at Zero

The Jacobian above is only valid, if the derivative is taken at zero. This can
be achieved by estimating the relative movement in each iteration step, such
that θt = 0 and θt+1 = Δθt.
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Therefore recalculation of the world coordinates of the point p at each
iteration is required. The corresponding observed point p̃ stays unchanged.
If the rotation center is c, which is the intersection of ωx,ωy,ωz, the final
movement is obtained by

θ̂t+1 = θ̂t + Δθt (14.10)

and

pt+1 =
(
Rx(θ̂α,t+1) ◦Ry(θ̂β,t+1) ◦Rz(θ̂γ,t+1)

)
(pt0 − c) + c (14.11)

where pt0 is the initial point coordinate p. In the last equation it may be more
efficient to use rotation matrices for evaluating the new points than Equation
(14.1).

14.3.5 Geometric Interpretation

Newton’s Method approximates the objective function by a quadratic func-
tion and iterates until convergence. Shown here is is the development of the
iterative approach for a rotation with angle θ around a fixed axis (ω,q) and
a known 3D-point–3D-point correspondence (p̃,p).

As we consider a nonlinear problem of estimating the rotation angle around
a fixed known axis in 3D space, the movement of a point on that axis is a
movement on a plane. Shown in the following Figures is only the development
on that plane. The error vector r(θ) = (m(θ,p) − p̃) is not necessarily within
that plane. However, for optimization only the projection onto the plane is of
importance, because the resulting minimizing point lies in that plane.

The problem is shown in Figure 14.5, where the vector v = ω × (p − q)
is the velocity vector of the rotational movement of the model point p, if p
rotates with an angular velocity of one.

Consider now the projection of r onto v, which reads:

r′
v(θ) =

rT v
vT v

v (14.12)

Fig. 14.5. Estimating the rotation angle for a 3D-point–3D-point correspondence.
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Fig. 14.6. Estimating the rotation angle for a 3D-point–3D-point correspondence.
Iterations 2 and 3.

One iteration of the Gauss-Newton results in the parameter change:

Δθ = −(JTJ)−1JT r(θ) = −(vT v)−1vT r(θ) = − rT v
vT v

(14.13)

Hence Δθ is the scale value of v that gives the projection of the error r onto
v and p̂ = p − r′

v(θ) = p + Δθ v.
Inserting Δθ in the movement Equation (14.5) gives the starting point p2

for the next iteration as shown in Figure 14.6 left. In the example shown Δθ1

is 1.36 rad or 78 deg.
In the second iteration the projection of r2 onto v leads to the minimizer

p̂2 that is almost on the circle. After insertion of Δθ2, which is −0.27 rad
or −15.6 deg, the next starting point p3 for iteration 3 is found as shown in
Figure 14.6 right. This point is so near to the final correct solution, that a
drawing of further iterations is not done.

14.3.6 2D–3D Pose Estimation

In the following sections rigid movement is estimated with Nonlinear Least
Squares from 2D-point–3D-point and 2D-line–3D-point correspondences.
Additionally a comparison with estimation from 3D-line–3D-point correspon-
dences and optical flow is given.

Assume the point p ∈ R
3 is observed by a pinhole camera and its pro-

jection onto the 2D image plane is p′ ∈ R
2. If the camera is positioned at

the origin and aligned with the world, such that the optical axis is the world
z-axis, the combination of camera projection and 3D rigid movement of the
point can be written as:

m′(p,θ) =

(
sx

mx(p,θ)
mz(p,θ) + cx

sy
my(p,θ)
mz(p,θ) + cy

)
(14.14)

where sx, sy are the focal length of the camera in x- and y-direction expressed
in pixel units and (cx, cy)T is the principal point of the camera. The additional
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Fig. 14.7. Object movement and 2D–3D correspondences.

assumption here is a possible skew to be zero, i.e., the rows and columns of
the image sensor are orthogonal to each other.

If an object with known geometry moves in space from a known pose to
a new pose and its known 3D points pi are observed in an image at p̃i

′, its
relative movement can be estimated by Nonlinear Least Squares using the 2D–
3D correspondence (p̃i

′, pi) with the following residual. See also Figure 14.7.

d = ri(θ) = (m′(pi,θ) − p̃i
′) (14.15)

The necessary Jacobian for the optimization is given now for a single corre-
spondence. For m correspondences the Jacobian is simply extended by addi-
tional rows. With θ = (sx, sy, cx, cy, θx, θy, θz, θα, θβ , θγ)T the Jacobian reads

J =
[

∂m′
∂sx

∂m′
∂sy

∂m′
∂cx

∂m′
∂cy

∂m′
∂θx

∂m′
∂θy

∂m′
∂θz

∂m′
∂θα

∂m′
∂θβ

∂m′
∂θγ

]
=

⎡⎣ mx

mz
0 1 0 sx

mz
0 sx

−mx

m2
z

∂m′
x

∂θα

∂m′
x

∂θβ

∂m′
x

∂θγ

0 my

mz
0 1 0 sy

mz
sy

−my

m2
z

∂m′
y

∂θα

∂m′
y

∂θβ

∂m′
y

∂θγ

⎤⎦ (14.16)

and

∂m′

∂θj
=

⎛⎜⎜⎝
∂(sx

mx
mz

)
∂θj

∂(sy
my
mz

)
∂θj

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
sx

(
∂mx
∂θj

mz−mx
∂mz
∂θj

)
m2

z

sy

(
∂my
∂θj

mz−my
∂mz
∂θj

)
m2

z

⎞⎟⎟⎟⎟⎟⎠ (14.17)

The partial derivatives ∂m
∂θj

, j ∈ {α, β, γ} are given in Equation (14.8). The
Jacobian above does not only allow estimation of the pose of an object, but
also the estimation of the internal camera parameters. Additionally the for-
mulation allows to estimate only a subset of the parameters, if some of them
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are known, e.g., rotation only or fixed principal point etc. As the Jacobian
above requires derivatives at zero, the estimation should be done relative to
the previous estimate iteratively as described in Section 14.3.4.

This analytically derived Jacobian for the problem of camera calibration
was already published 1996 as an extension of Lowe’s pose estimation algo-
rithm [2]. In the next sections it is extended to articulated objects.

The optimization above minimizes the distance between the projected 3D
model point with its corresponding 2D image point, while in [21] the 3D-
difference of the viewing ray and its corresponding 3D point is minimized. The
minimization in 3D space is not optimal, if the observed image positions are
disturbed by noise, as shown in [26], because for 3D points, which are further
away from the camera, the error in the optimization will be larger as for points
nearer to the camera, which leads to a biased pose estimate due to the least
squares solution. In [26] a scaling value was introduced, which downweights
correspondences according to their distance to the camera, which is in fact
very close to Equation (14.17).

Approximation by 3D-point-3D-line correspondences

An alternative approach to estimate pose from 2D-3D correspondences is a
minimization of 3D point–3D line distances. If the inverse projection function
is known, as e.g., for a calibrated pinhole camera, it is possible to calculate
the 3D viewing ray for the known 2D image point. Assume the viewing ray
is described by its normalized direction vector ω and a point qω on the ray.
The distance d between a point p and the viewing ray is

d = | ω × p − ω × qω| (14.18)

Using this distance the pose estimation problem by Nonlinear Least Squares
with correspondences ((ω̃i, q̃ω,i),pi) is:

min
θ

∑
i

| ω̃i × m(θ, pi) − ω̃i × q̃ω,i|2 (14.19)

Because the cross product ω̃i × m(θ, pi) can also be described by a matrix
multiplication, it is obvious that this minimization problem is very close to
that of Equation (14.4).

Let [ω̃×]3x3 be the cross product matrix of one correspondence. The nec-
essary Jacobian J for the Gauss-Newton Method then is:

J = [ω̃×]3x3J14.7 (14.20)

where J14.7 is the Jacobian for 3D point–3D point correspondences from Equa-
tion (14.7). For additional correspondences the Jacobian is extended by 3
additional rows for each correspondence.

The minimization in 3D space is inaccurate, if the 2D points are disturbed
by noise [26]. Therefore this method should only be applied if the projection
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function is difficult to derive, e.g., for fisheye cameras. In case of pinhole
cameras the minimization in the image plane, where the error is observed, is
more accurate. However, the inaccuracies are only significant in the presence
of inaccurate correspondences and if the extension in depth of the object is
large compared with its distance to the projection center.

Pose estimation from 3D-point–2D-line correspondences

Let ñω ∈ R
2 be the normal vector of a 2D line and q̃′

ω ∈ R
2 one point

on this line. If the distance of a projected point p′
i = m′(0,pi) to this line

is to be minimized as shown in Figure 14.8, then the objective function for
minimization is

min
θ

∑
i

∣∣ñω

(
m′(θ, pi) − q̃′

ω

)∣∣2 (14.21)

with correspondences ((ñω,i, q̃′
ω,i) , pi).

The residual function is the distance of pi to the line in the direction of
the normal and therefore may be negative:

ri(θ) = ñω

(
m′(θ, pi) − q̃′

ω

)
⇔ (14.22)

= ñω m′(θ, pi) − ñω q̃′
ω ⇔ (14.23)

= (ñω)x m′
x(θ, pi) + (ñω)y m′

y(θ, pi) − dω (14.24)

Applying the Gauss-Newton Method requires the first derivative of the resid-
ual function, which reads:

Fig. 14.8. Pose estimation from corresponding 3D-point and 2D-line.
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∂ri(θ)
∂θj

= (ñω)x

∂m′
x(θ, pi)
∂θj

+ (ñω)y

∂m′
y(θ, pi)
∂θj

(14.25)

= ñω
∂m′(θ, pi)

∂θj
(14.26)

The objective function requires the absolut value of the residual. However
it can be ignored for the derivation as explained now. With the Jacobian
Jij = ∂ri(θ)

∂θj
the gradient of the objective function for a single correspondence

is:

∇f = JT r(θ) (14.27)

=
(
ñω

∂m′(θ, pi)
∂θj

) (
ñω

(
m′(θ, pi) − q̃′

ω

))
(14.28)

Because the first and the last term in the last equation both change signs, if
the normal is negated, it is not of importance wether the normal ñω points
towards or away from the origin. Therefore the absolut value function in the
objective can be ignored and it is valid to derive ri(θ) instead of |ri(θ)|.

In other words: The distance of the point to the line is given in the direction
of the normal in the residual function. The derivative of the point movement
is also with respect to that normal. Therefore the minimization makes steps
in the correct direction, regardless in which direction the normal is pointing.

Pose estimation from optical flow

In some applications the texture or color of the object is also known in addi-
tion to its geometry. In that case, there is the possibility to use the texture
information of the model to establish correspondences with the current image.
It is not necessary to have a complete textured model, it is sufficient to have
colored points.

The idea is to move the object such that the projection of it is most similar
to the current image of the object. To achieve this, an assumption is made,
that the development of grey values in the near vicinity of the correct point
is linear. This assumption is the same as for the KLT tracker [25]. However,
this assumption only holds, if the distance between the projected model point
and its position in the current image is small. If the displacement is large a
multi scale approach is necessary. In that case the current image is smoothed,
e.g., with a Gaussian kernel. Increasing sizes of the kernel are applied to
get different levels of smoothing. This results in faster image processing for
the lower resolution images. The estimation is then applied iteratively to the
smallest image first, giving a rough estimate of the pose. Higher resolution
images give more accurate pose estimates down to the original image, which
yields the most accurate pose. In Figure 14.9 three different levels of smoothing
are shown. Let p′ ∈ R

2 be the projection of the model point for the current
pose. And let g̃ ∈ R

2 be the grey value gradient vector at position p′ and
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Fig. 14.9. Left: Projection of model point and gradient. Middle: closeup of the
movement. Right: Formulation as point line correspondence.

let d = ci(p′) − cm(p′) be the grey value difference between the color of the
projected model cm(p′) point and the pixel value ci(p′) at the same position
in the current image. Then the objective function for minimization is

min
θ

∑
i

|g̃ (m′(θ, pi) − p′) − d|2 (14.29)

The geometric interpretation of the objective is given in the following. As-
sume the object moved to the left and a little upwards resulting in a displace-
ment vector as shown in Figure 14.9 left (the dotted line). This displacement
is unknown and depends on the pose parameters of the object. Shown in the
left is the projected model point p′ and the image gradient at that position.
The goal of minimization is to move the object model point such that the
image color at that position equals the object model point’s color. If the de-
velopment of color values would be linear the necessary displacement is d

|g̃| in
direction of the gradient vector.

This is equal to a 3D-point-2D-line correspondence as in the previous sec-
tion. The corresponding line has the normal ñg = 1

|g̃| g̃ and a point q′
g on

the line is found by starting from p′ and taking the point with distance d
|g̃|

in direction of the gradient vector resulting in q′
g = p′ + d

|g̃| ñg as shown in
Figure 14.9. The point p′ equals the projected model point at the current
pose m′(0,pi). The objective function reads with this formulation:

min
θ

∑
i

∣∣∣ñg

(
m′(θ, pi) − q̃′

g

)∣∣∣2 (14.30)

with correspondences ((ñg,i, q̃′
g,i), pi).

KLT equations for rigid and articulated objects

An alternative derivation for estimation from model color, leading to the same
equations as with (14.30), is obtained by applying the KLT equations [25].
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Similar to above, the idea is, that the projected model point has the same
image brightness for different poses, also known as image brightness constancy.

If the point p′ in the image It corresponds to a known 3D object, whose
pose is known, the corresponding 3D point p for that image point can be
calculated by intersection of the viewing ray with the 3D object. Now it is
possible to find the image displacement to the next image It+1, which min-
imizes the brightness difference under the constraint, that the point belongs
to a rigid object, which performed a rigid motion from one image to the next.
The objective function for multiple points belonging to the object is now with
respect to the pose parameters. If the relative motion to the next image is
found, the corresponding image displacements can be easily calculated.

Let It+1(m′(θ, pi)) be the image value at the projected 3D point position,
such that m′(0, pi) = p′

i. The objective function is then

min
θ

∑
i

(
It+1(m′(θ, pi)) − It(p′

i)
)

(14.31)

The necessary Jacobian for solving this Nonlinear Least Squares problem con-
sists of the partial derivatives of the residuals:

Jij =
∂It+1(m′(θ, pi))

∂θj
(14.32)

Important is now, that the derivatives are taken at a specific parameter posi-
tion θt, which, after application of the cain rule, leads to:

∂It+1(m′(θ, pi))
∂θj

∣∣∣∣
θt

=
∂It+1(q′)

∂q′

∣∣∣∣
θt

∂m′(θ, pi)
∂θj

∣∣∣∣
θt

(14.33)

where ∂It+1(q
′)

∂q′ = (gx, gy)T is the spatial image gradient evaluated at
m′(θt, pi), which equals p′

i, if θt is zero. As visible, the Jacobian equals
those of (14.26) for 3D-point-2D-line correspondences.

14.3.7 Articulated Objects

In this section the estimation of pose or rigid movement as explained in the
previous section is extended to kinematic chains. A kinematic chain is a con-
catenation of transformations. Here the transformations are rotations around
arbitrary axes in 3D space. An articulated object consists of one or multiple
kinematic chains and has a shape or geometry in addition. Like the arm of
the human model in Figure 14.2.

Movement in a kinematic chain

In this work kinematic chains consist only of rotational transformations
around known axes at arbitrary positions. The axes for the arm are shown
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as arrows in Figure 14.2. There is a fixed hierarchy defined for the rotations,
e.g., a rotation around the shoulder abduction axis (the one pointing forward)
changes the position and orientation of all consecutive axes. In addition to the
rotational transformations, there is the position and orientation of the base,
which undergoes rigid motions, e.g., the upper body in Figure 14.2.

Consider now the movement of a point p on the model of the arm with
p rotational axes, e.g., a point on the hand. Its movement can be described
using the rotation description from Equation (14.1) and the rigid movement
from Equation (14.5) resulting in:

m(θ,p) = (θx, θy, θz)T + (14.34)(
Rωx

(θα) ◦Rωy
(θβ) ◦Rωz

(θγ) ◦Rω1,q1(θ1) ◦ · · · ◦Rωp,qp
(θp)
)
p

The coordinates of the axes (wj,qj) may be given relative to their parent
axis (the next one upwards in the chain) or all coordinates of all axes may be
given in the same coordinate system, i.e., the same where the base transform
is defined, e.g., the world coordinate system. If not stated otherwise (wj,qj)
are assumed to be in world coordinates.

If θ equals 0 the position and orientation of the axes define the kinematic
chain and also the relative transformations between the axes. To obtain the
world coordinates of the axes for a specific θt the direction vector ωj and the
point on the axis qj are transformed by applying the chain transform up to
axis (wj−1,qj−1) to them. Therefore (ωj ,qj) are different depending on the
current θt, if a description in world coordinates is used.

For a specific pose θt a relative movement Δθ can be imagined in the
following way: The point p, e.g., on the hand, is rotated at first around the
closest axis (ωp,qp) in the hierarchy with angle Δθp, then around the fixed
second axes (ωp−1p,qp−1) and so on up to the base, which adds the rigid
movement.

Estimating the pose of a kinematic chain from given 3D–3D correspon-
dences (pi, p̃i) may be done with Newton’s method, which is here estimating
the joint angles and the global orientation and position. The minimization
problem is the same as in Equation (14.4), while the movement function
m(θ,p) includes here the joint angles as well:

min
θ

∑
i

|m(θ,p) − p̃|2 (14.35)

To find the minimizer with the iterative Gauss-Newton method the Jacobian
of the residual functions is necessary.

Jacobian of articulated movement

The partial derivatives of the movement function, which gives the Jacobian,
can be derived in the same way as for the rigid movement using the description
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of rotations around known axes in 3D space from Equation (14.1). If the
current pose is θt and only relative movement is estimated the Jacobian is:

J =

⎡⎢⎣1 0 0 ∂mx

∂θα

∂mx

∂θβ

∂mx

∂θγ

∂mx

∂θ1
·· ∂mx

∂θp

0 1 0 ∂my

∂θα

∂my

∂θβ

∂my

∂θγ

∂my

∂θ1
·· ∂my

∂θp

0 0 1 ∂mz

∂θα

∂mz

∂θβ

∂mz

∂θγ

∂mz

∂θ1
·· ∂mz

∂θp

⎤⎥⎦ (14.36)

The derivatives at zero are:
∂m(θ,p)

∂θα

∣∣∣∣
θ=0

=ωx × (p − qx)

∂m(θ,p)
∂θβ

∣∣∣∣
θ=0

=ωy × (p − qy)

∂m(θ,p)
∂θγ

∣∣∣∣
θ=0

=ωz × (p − qz)

∂m(θ,p)
∂θj

∣∣∣∣
θ=0

=ωj × (p − qj)

(14.37)

where j ∈ {1, .., p} and ωx,qx denote rotation around an arbitrary point in
space and ωx,ωy,ωz are assumed orthogonal.

Given here is the special Jacobian for θ = 0, which is valid if all axes are
given in world coordinates and only relative movement is estimated.

Jacobian of articulated movement under projection

If the movement of the articulated object is observed by a pinhole camera,
and 3D-point–2D-point correspondences (p, p̃′) are given, the estimation of
joint angles and global pose can be done in the same way as for rigid objects
by Nonlinear Least Squares (solved with Gauss-Newton). The optimization
problem reads:

min
θ

∑
i

|m′(θ,p) − p̃′|2 (14.38)

The necessary Jacobian is similar to the partial derivatives of Equation
(14.15). Here the additional partial derivatives for the rotation around the
joint axes give additional columns in the Jacobian.

To estimate the pose of the articulated object from other kinds of corre-
spondences, the same optimization with the according objective function as
for the rigid movement can be applied. The only difference is the different
movement function, that now also includes the joint angles of the kinematic
chain. The necessary partial derivatives can be looked up in the two previous
sections.

Important to note is, that for each model point it is necessary to know, to
which joint of the articulated object the point belongs, e.g., a point between
the wrist and elbow can give no information about the wrist joint angles.
Therefore the Jacobian entries for that point will be zero in the column with
the wrist angles.
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14.4 Comparison with Gradient Descent

Throughout the literature on body pose estimation from 3D-point–3D-point
correspondences there are various optimization techniques that try to mini-
mize the difference between observed 3D points and the surface of the model.
Very often this optimization problem is solved with a Gradient Descent
method and numerical derivatives, e.g., numerical derivatives are used in
[3, 7, 14]. Gradient Descent is still very popular, e.g., in [13] Euler-Lagrange
equations are integrated over time, which is similar to standard Gradient
Descent with a fixed step size.

Because Gradient Descent (GD) converges very slowly in flat regions,
there are various approaches to increase the convergence rate. In the work
of Bray [3, 14] a new Gradient Descent method is proposed, called “Stochas-
tic Meta Descent” (GDSMD). The GDSMD method is applied to estimate
the motion and pose of a human. The motion function is modeled similar as
in this work by rotations around known axes, however optimization relies on
numerical derivatives. Additionally in both publications a comparison with
other common optimization methods was made, these were the Levenberg-
Marquardt extension of Gauss-Newton in [14] and BFGS and Powell’s method
in [3]. The proposed GDSMSD was reported to work faster and more accurate.
Therefore a detailed comparison with Gauss-Newton is made here.

14.4.1 Stochastic Meta Descent

We describe here briefly the SMD method. The stochasticity of this approach
is due to random sub sampling of the complete data in each iteration.

A Gradient Descent method updates parameters in one iteration using the
update formula

θt+1 = θt − α · ∇fi(θ) = θt − α · JT r(θt) (14.39)

where t is the current time step or iteration number, the operator “·” indicates
a componentwise product, such that each parameter may have a different step
size.

According to [14] the idea of SMD is to update the step sizes automatically
depending on the steepness and direction of the gradient in last time steps.
Especially if the error function exhibits long narrow valleys, a gradient descent
might alternate from one side of the valley to the other. To model these
behavior, the step size is increased for parameters, whose gradient had the
same sign in the last steps and is decreased, if the sign changed. In detail
this is:

αt = αt−1 · max
(

1
2
,μ · vt · ∇ft(θt)

)
(14.40)

where μ is a vector of meta step sizes, which control the rate of change of the
original step sizes and v is the exponential average of the effect of all past
step sizes. The update of v is simplified in the following as in [14]:
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vt+1 = at · ∇ft(θt) (14.41)

Constraints on possible motion of the human are imposed by mapping
back each parameter to its allowed interval in each iteration. Because the
resulting parameter change is smaller in that case, the meta step sizes are
updated accordingly.

Global transform

In the first experiment the global transform is estimated, while only the trans-
lation in x-direction and the rotation around the height axis are changed.
Figure 14.10 shows on the left the starting pose for estimation together with
the observed data point cloud, which are generated from the pose shown on
the right with added noise (deviation 5 cm). The difference between start and
target pose is rotation around the y-axis with −40 degrees and translation in
x-direction with 0.35 m.

Contour levels of the error surface are shown in Figure 14.11 with the
minimum at (0, 0). The error surface of the global transform is calculated by
changing the rotation from −40 to +40 degrees by 0.5 degrees and the transla-
tion in x-direction from −0.4 m to +0.2 m by 0.02 cm. For each model pose the
error is calculated setting up correspondences by Closest Point using all 6,500
observed points. The plotted error is the average distance between model and
observed points. As visible, the error surface is almost quadratic, which can
be expected, because the translation in x-direction is linear giving a quadratic
error for the translation and the quadratic approximation of the rotation is
good for small angles. Visible here is also, that the quadratic approximation
is valid even for changing correspondences (due to nearest neighbour).

Fig. 14.10. Starting pose on the left with the disturbed point cloud of the target
pose (noise deviation 0.05 m) and target pose on the right.
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Fig. 14.11. Estimation of the global transform for 1,000 correspondences. Plotted
is the error surface and the iterations for Gauss-Newton (GN), Gradient Descent
(GD) and Meta Descent (GDSMD).

We compare Gauss-Newton (GN), Gradient Descent (GD) and the Sto-
chastic Meta Descent (GDSMD) by estimating the 6 parameters of the global
transform. The x position and the rotation angle around the y-axis are plotted
for each three methods. From the total set of 6,500 observed depth points 1,000
points were chosen randomly for each iteration. The estimation is stopped, if
the parameter change is below a certain threshold or at a maximum of 200
iterations. The result for GN is shown in Figure 14.11 as a green solid line, for
GD as blue crosses, and for GDSMD as a dashed red line. The initial stepsizes
for GD and GDSMD are 0.1 for translation and 1 for rotation. The additional
parameters for GDSMD are μ = 1, 000 and λ = 0.

The Gradient Descent methods do not reach the minimum at (0, 0) within
200 iterations. The main reason for the bad performance of the GD methods
is their characteristic to make small steps on flat surfaces, because the pa-
rameter change in each iteration is proportional to the size of the Jacobian
(the gradient), while the GN assumes an quadratic error function resulting in
larger steps on smooth surfaces.

The GDSMD approach tries to overcome the slow convergence of the GD
in flat regions by adjusting the stepsizes according to previous parameter
changes. However, in the case shown, this feature has also the effect to increase
the step size dramatically in steep regions. This dramatic increase in the
step sizes made the GDSMD method in the shown case even slower than
the standard GD without varying step sizes. Possibly better chosen values of
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Fig. 14.12. Estimation of the global transform for 10 correspondences. Initial step
size of GD and GDSMD was 0.1 for translation and 1 for rotation.

μ = 1,000 and λ = 0 and better initially step sizes could overcome the effect.
However, the GN approach does not need any kind of parameters, making it
much easier to use.

Using the the same starting point and the same parameters for GD and
GDSMD the estimation is repeated using only 10 random correspondences.
Results are shown in Figure 14.12. As visible the GN starts to jump very
erratic, because of the small amount of data. The GD methods are able to
reach a point near the minimum, but the larger effect of noise due to the small
data amount is also visible.

Shoulder elbow movement

The error surface of the previous experiment is nearly quadratic. To have
a more difficult and less smooth error surface another experiment is carried
out. The global position and rotation of the model is unchanged, but the
shoulder twist and the elbow flexion are changed. Due to the Closest Point
correspondences, which are changing significantly for the lower arm, when it
is moving near to the body, the error surface is less smooth. Also the amount
of correspondences is lower (around 650), because correspondences were only
established for observed points, whose closest corresponding model point is on
the upper or lower right arm. The smaller amount of correspondences makes
the error surface less smooth.

The estimation is performed using an initial step size of 20 for GD and
GDSMD. The additional meta step sizes for GDSMD were μ = 1,000 and
λ = 0. Figure 14.13 shows the development of shoulder twist and elbow flexion
together with error contour levels. Within 200 iterations all methods reach the
correct minimum while performing similarly.
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Fig. 14.13. Estimation of the shoulder twisting and elbow flexion for 650 corre-
spondences. Initial stepsizes are 20 for both angles.

Fig. 14.14. Estimation of the shoulder twisting and elbow flexion for 10 correspon-
dences. Two runs with the same parameters.

Shown in Figure 14.14 are two runs of the same minimization with 10
random correspondences in each iteration. As visible, the noise and the nearest
neighbor correspondences lead to an erratic development of estimated angles.
Smaller initial step sizes for the GD methods smoothes the development of
values, but also increases the possibility to get stuck at a local minimum
as in the left plot, where the GDSMD method got stuck in the beginning.
On the other hand the small amount of data can lead to large changes in
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the wrong direction for the GN method. A dampening regularizer for GN is
suggested here.

14.4.2 Summary of Comparison

Comparing the Gradient Descent (GD) and the Stochastic Meta Descent
(GDSMD) directly, the GDSMD performs not necessarily better than stan-
dard GD with fixed step sizes. However, with changes in the step sizes and
additional meta step sizes it is possible to tune the parameters, such that
GDSMD needs less iterations than standard GD. The GD methods have the
advantage that even a small amount of data is sufficient to find a minimum.
However, in the presence of noisy measurements averaging smoothes the effect
of noise, such that it is beneficial to use more data points at once.

The Gauss-Newton method is not in the need of additional parameters
and converges faster in flat regions. The drawback of the GN approach is
the need for many data points. There should be at least as much data than
parameters to estimate, otherwise it is not possible to calculate a solution in
the Least Squares iteration step, because the JTJ matrix is not invertible.
Important to note here is the possibility of dampening by introducing a single
dampening value, which is added as regularizer to the objective function. The
Levenberg-Marquardt extension of GN is an automatic method to calculate
the dampening value. However, if the fraction of data amount to parameters
is small, a manual dampening value is more appropriate.

The experiments showed (as can be expected), that optimization in the
presence of noise is more accurate and stable (with respect to local minima),
if more data is used simultaneously. If only a subset of the whole data is used
in each iteration, processing time is decreased, but additional iterations are
necessary, because step sizes have to be small.

An argument in [3], which explains the reported worse behaviour of GN
like methods, is their characteristic to make large steps in each iteration. If the
range of possible motion for each joint angle is constrained by min-max values,
it is possible, that the minimization does not improve significantly in one
iteration, because a large step may lead far outside the feasible region. However
for GN it is possible to reduce the step size by increasing the dampening value,
which shifts the GN more to a GD. For GD methods it is also not guaranteed,
that the small steps overcome the problem of getting stuck at the border of
the feasible region. In our experiments in this and previous work, we did not
encounter the problem of getting stuck on the border with GN so far.

14.5 Estimation from Stereo Depth Maps

In this section motion of a person is estimated by Nonlinear Least Squares as
explained in the previous sections by use of depth data from a stereo cam-
era setup. At first the algorithm to find 3D-point–3D-point correspondences
efficiently using openGL is explained and followed in the end by results.
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14.5.1 Stereo

Our motion estimation is based on dense depth information which could be
estimated directly from correspondences between images. Traditionally, pair-
wise rectified stereo images were analyzed exploiting geometrical constraints
along the epipolar lines. More recently, generalized approaches were intro-
duced that can handle multiple images and higher order constraints. See [23]
for an overview. Achieving realtime performance on standard hardware has
become reality with the availability of free programmable graphics hardware
(GPU) and the additional benefit of keeping the CPU free for other tasks like
our pose estimation [27]. The results presented here are calculated from depth
images generated by a dynamic programming-based disparity estimator with
a pyramidal scheme for dense correspondence matching along the epipolar
lines [10].

14.5.2 Building of 3D–3D Correspondences

To apply the pose estimation algorithm described in the previous chapter,
correspondences between observed 3D points and 3D model points are nec-
essary. As the observed points are calculated from depth maps, these cor-
respondences are not known. Equal to [3, 4, 8, 22] an Iterative Closest Point
(ICP) approach is taken. For each observed point the nearest point on the
model is assumed to be the corresponding one. The body pose of the model
is calculated with these correspondences. The following steps are repeated
multiple times for each frame of a sequence. The larger the relative motion
is, the more correspondences will be incorrect. The principle idea of ICP is,
that an estimated relative motion decreases the difference between model and
observation, such that more correspondences are correct if build again for the
smaller difference.

The steps in one ICP iteration are:

1. Render Model in current pose (OpenSG)
2. Find visible model points by analyzing color of rendered image pixels
3. Build correspondences from depth map by finding nearest model point
4. Estimate relative movement by Nonlinear Least Squares

Between frames it is common to predict the pose for the next image by
applying some kind of motion model. In this work the displacement between
the last two frames is taken for prediction. Assumed is a constant velocity for
each joint angle between frames.

In the following the single steps are explained in detail.

Rendering the model

Because it is assumed, that the pose was calculated correctly in the last frame
and the displacement is small between frames, the rendering of the model
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with the last calculated pose gives approximately the visible body parts. To
get a correct synthesized view the internal parameters of the calibrated camera
have to be applied to the virtual camera. Because the used rendering library
OpenSG, did not support cameras, whose principal point is not in the im-
age center, OpenSG was extended by an “OffCenterCamera”, which principal
point is given in normalized device coordinates (−1 to 1).

Find visible model points

The rendered image can then be analyzed to get the visible 3D points of the
model. A possible solution is to calculate for each image pixel, which belongs
to the model (is not zero), the viewing ray and intersect it with the 3D model.
However, this is very time consuming.

Therefore it is assumed that the corners of the model’s triangles repre-
sent the surface sufficiently dense. Then a lookup table of model points can
be established, that allows fast computation of the visible subset of model
points.

Each triangle of the model is rendered in a unique color, such that the
red value indexes the body part (corresponds to a BAP id) and the green
and blue values index the vertex in the body part’s geometry. The resulting
image looks like that shown in Figure 14.15. The set of visible model points is
an associative array, which uses a binary search tree (C++ std::map), where
the key value is the height value of the point. The height is appropriate,
because the extension of the visible point cloud is usually largest in height. A
principal component analysis (PCA) could be conducted to find the coordinate
with largest variance. However for the experiments in this work the height
coordinate has the largest variance.

Fig. 14.15. The 3D point cloud computed from the depth image.
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Build correspondences by nearest neighbor

The observations are depth images calculated from disparity maps. Together
with the internal camera parameters a 3D point cloud of observed points can
be computed. For these observed points it is now necessary to find the closest
visible point model point.

An example for the observed point set is shown in Figure 14.15 together
with the body model. The green boxes represent the observed points.

The computation time for one frame depends largely on the amount of ob-
served points, therefore the depth image is randomly subsampled to decrease
the number of correspondences and reduce computation time. To calculate
the 3D observed points from the known focal length and principal point of
the camera efficiently, the camera coordinate system is assumed to be aligned
with the world coordinate system and the body model is positioned initially,
such that it is close to the observed point set. This simplification is only pos-
sible as long as a single stereo view is used for pose estimation. For multiple
views, the complete projection matrix has to be used to calculate viewing rays
for each pixel in the depth image.

For each observed point the closest visible model point is found by search-
ing in the associative array for the nearest point with regard to height. Starting
from the point with the smallest height difference p1, the search is alternated
in both directions. and is stopped, if the distance in height to a point is larger
than the Euclidean distance dE to the nearest point pN found so far. Figure
14.16 illustrates this. The last tested points are ptop and pbot.

Estimation of relative movement

To fit the body model to the observed point set, a segmentation of the per-
son from the background is necessary. In [3] this is done by using skin color.
We assume here only that there are no scene objects (or only negligible parts)
within a certain distance to the person by using reweighted least-squares in the
pose estimation step. Therefore no explicit segmentation is done, but corre-
spondences, whose error value is larger than a predefined mininmum distance,
are not included in the estimation, because the corresponding observed point
belongs probably to the background scene.

Fig. 14.16. Search for the nearest model point is bound by height distance.
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The estimation of body pose for one set of correspondences involves mul-
tiple iterations within the dampened Gauss-Newton optimization. There is
an upper bound on the number of iterations to have an upper bound on the
estimation time. Iterations are also stopped if the parameter change drops
below a certain threshold.

14.5.3 Results

The implementation is tested with depth images from a real sequence. The
efficiency of our implementation was already shown in [12] where complex
arm movement is estimated with 5fps on a 3Ghz Pentium 4. Here experi-
ments are carried out here with 24 DOF motion neglecting computation time.
The estimation time per frame depends mainly on the number of used data
points. In the experiment shown all points from the depth image are taken,
the estimation time with 100,000 points was about 15 seconds per frame, while
in [12] 800 correspondences were used. Two depth images from the sequence
are shown in 14.17. The initial pose was defined manually. The resulting poses
are shown in Figure 14.18, where the model is superimposed on the original
image. The 24 DOF are in detail: 4 for each arm (3 shoulder and 1 elbow),

Fig. 14.17. Original undistorted image and calculated depth image below it.
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Fig. 14.18. Estimated motion with 24 DOF. Model superimposed on the original
image. (COLOR).

6 for the global transform and 5 for each leg (3 hip, 1 knee and 1 ankle). The
original sequence was recorded with 25fps, after 130 frames tracking of one
arm angle is lost. This is due to the single stereo view.
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All available stereo data of about 100,000 points were used for this
sequence, though not all are shown in the figure, because the floating point
depth image was scaled and shifted, such that the interesting depth range is
clearly visible.

14.6 Conclusions

We showed how body pose estimation by nonlinear optimization methods can
be improved using the correct derivatives within a Nonlinear Least Squares
framework. Different kind of correspondences can be handled at once. The
resulting equations are similar to previous approaches (12) and even increase
the accuracy for 2D-3D correspondences. A comparison of different optimiza-
tion methods is performed, showing the advantages of the Gauss-Newton over
Gradient Descent methods. The proposed estimation method for articulated
objects is applied to motion sequences with complex 24 DOF motion showing
the possibilities of motion capture form a single stereo view.

Thanks to Bodo Rosenhahn, Edilson de Aguiar and Prof. H.-P. Seidel (Max-

Planck-Institut, Saarbrücken) for recording of the test sequences.
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Summary. Most common methods for accurate capture of three-dimensional
human movement require a laboratory environment and the attachment of markers
or fixtures to the bodys segments. These laboratory conditions can cause unknown
experimental artifacts. Thus, our understanding of normal and pathological human
movement would be enhanced by a method that allows the capture of human move-
ment without the constraint of markers or fixtures placed on the body. The need
for markerless human motion capture methods is discussed and the advancement of
markerless approaches is considered in view of accurate capture of three-dimensional
human movement for biomechanical applications. The role of choosing appropriate
technical equipment and algorithms for accurate markerless motion capture is crit-
ical. The implementation of this new methodology offers the promise for simple,
timeefficient, and potentially more meaningful assessments of human movement in
research and clinical practice.

15.1 Introduction

Human motion capture is a well-established paradigm for the diagnosis of
the patho- mechanics related to musculoskeletal diseases, the development
and evaluation of rehabilitative treatments and preventive interventions for
musculoskeletal diseases The use of methods for accurate human motion cap-
ture, including kinematics and kinetics, in biomechanical and clinical envi-
ronment is motivated by the need to understand normal and pathological
movement [9]. For example, for the investigation of osteoarthritis (OA) initia-
tion [61,64,65], gait analysis performed through marker based motion capture
techniques provides an effective research tool to identify underlying mechani-
cal factors that influence the disease progression. A next critical advancement
in human motion capture is the development of a noninvasive and markerless
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system. A technique for accurately measuring human body kinematics that
does not require markers or fixtures placed on the body would greatly expand
the applicability of human motion capture.

15.1.1 Current State of the Art

At present, the most common methods for accurate capture of three-
dimensional human movement require a laboratory environment and the
attachment of markers, fixtures or sensors to the body segments. These labo-
ratory conditions can cause experimental artifacts. For example, it has been
shown that attaching straps to the thigh or shank alters joint kinematics
and kinetics [34]. In general, the primary technical factors limiting the ad-
vancement of the study of human movement is the measurement of skeletal
movement from a finite number of markers or sensors placed on the skin. The
movement of the markers is typically used to infer the underlying relative
movement between two adjacent segments (e.g., knee joint) with the goal of
precisely defining the movement of the joint. Skin movement relative to the
underlying bone is a primary factor limiting the resolution of detailed joint
movement using skin-based systems [22,41,50,77,80].

Skeletal movement can also be measured directly using alternative
approaches to a skin-based marker system. These approaches include stereora-
diography [44], bone pins [47,77], external fixation devices [41] or single plane
fluoroscopic techniques [12,85]. While these methods provide direct measure-
ment of skeletal movement, they are invasive or expose the test subject to
radiation. More recently, real-time magnetic resonance imaging (MRI) using
open-access MRI provides noninvasive and harmless in vivo measurement of
bones, ligaments, muscle, etc. [79]. However, all these methods also impede
natural patterns of movements and care must be taken when attempting to
extrapolate these types of measurements to natural patterns of locomotion.
With skin-based marker systems, in most cases, only large motions such as
flexion–extension have acceptable error limits. Cappozzo et al. [21] have ex-
amined five subjects with external fixator devices and compared the estimates
of bone location and orientation between coordinate systems embedded in the
bone and coordinate systems determined from skin-based marker systems for
walking, cycling and flexion–extension activities. Comparisons of bone orien-
tation from true bone embedded markers versus clusters of three skin-based
markers indicate a worst-case root mean square artifact of 7◦.

The most frequently used method for measuring human movement involves
placing markers or fixtures on the skin’s surface of the segment being ana-
lyzed [15]. The vast majority of current analysis techniques model the limb
segment as a rigid body, then apply various estimation algorithms to obtain
an optimal estimate of the rigid body motion. One such rigid body model for-
mulation is given by Spoor and Veldpas [84]; they have described a rigid body
model technique using a minimum mean square error approach that lessens the
effect of deformation between any two time steps. This assumption limits the
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scope of application for this method, since markers placed directly on skin will
experience nonrigid body movement. Lu and O’Connor [55] expanded the rigid
body model approach; rather than seeking the optimal rigid body transforma-
tion on each segment individually, multiple, constrained rigid body transforms
are sought, modelling the hip, knee, and ankle as ball and socket joints. The
difficulty with this approach is modelling the joints as ball and sockets where
all joint translations are treated as artifact, which is clearly a limitation for
knee motion. Lucchetti et al. [56] presented an entirely different approach, us-
ing artifact assessment exercise to determine the correlation between flexion–
extension angles and apparent skin marker artifact trajectories. A limitation
of this approach is the assumption that the skin motion during the quasi-static
artifact assessment movements is the same as during dynamic activities.

A recently described [7,8] point cluster technique (PCT) employs an over-
abundance of markers (a cluster) placed on each segment to minimize the
effects of skin movement artifact. The basic PCT [2] can be extended to
minimize skin movement artifact by optimal weighting of the markers ac-
cording to their degree of deformation. Another extension of the basic PCT
corrects for error induced by segment deformation associated with skin marker
movement relative to the underlying bone. This is accomplished by extend-
ing the transformation equations to the general deformation case, modelling
the deformation by an activity-dependent function, and smoothing the defor-
mation over a specified interval to the functional form. A limitation of this
approach is the time-consuming placement of additional markers.

In addition to skin movement artifact, many of the previously described
methods can introduce an artificial stimulus to the neurosensory system while
measuring human movement yielding motion patterns that do not reflect nat-
ural patterns of movement. For example, even walking on a treadmill can
produce changes in the stride length–walking speed relationships [13]. Inser-
tion of bone pins, the strapping of tight fixtures around limb segments or
constraints to normal movement patterns (such as required for fluoroscopic
or other radiographic imaging measurements) can introduce artifacts into the
observation of human movement due to local anesthesia and/or interference
with musculoskeletal structures. In some cases, these artifacts can lead to
incorrect interpretations of movement data.

15.1.2 Need for Unencumbered Motion Capture

The potential for measurement-induced artifact is particularly relevant to
studies where subtle gait changes are associated with pathology. For example,
the success of newer methods for the treatment and prevention of diseases
such as osteoarthritis [10] is influenced by subtle changes in the patterns of
locomotion. Thus, the ability to accurately measure patterns of locomotion
without the risk of an artificial stimulus producing unwanted artifacts that
could mask the natural patterns of motion is an important need for emerging
health care applications.
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Motion capture is an important method for studies in biomechanics and
has traditionally been used for the diagnosis of the patho-mechanics related to
musculoskeletal diseases [9,39]. Recently it has also been used in the develop-
ment and evaluation of rehabilitative treatments and preventive interventions
for musculoskeletal diseases [64]. Although motion analysis has been recog-
nized as clinically useful, the routine clinical use of gait analysis has seen
very limited growth. The issue of its clinical value is related to many factors,
including the applicability of existing technology to addressing clinical prob-
lems and the length of time and costs required for data collection, processing
and interpretation [83]. A next critical advancement in human motion cap-
ture is the development of a noninvasive and markerless system. Eliminating
the need for markers would considerably reduce patient preparatory time and
enable simple, time-efficient, and potentially more meaningful assessments of
human movement in research and clinical practice. Ideally, the measurement
system should be neither invasive nor harmful and only minimally encumber
the subject. Furthermore, it should allow measuring subjects in their natural
environment such as their work place, home, or on sport fields and be capable
of measuring natural activities over a sufficiently large field of view. To date,
markerless methods are not widely available because the accurate capture of
human movement without markers is technically challenging yet recent tech-
nical developments in computer vision provide the potential for markerless
human motion capture for biomechanical and clinical applications.

15.2 Previous Work

In contrast to marker-based systems motivated by the expanded need for
improved knowledge of locomotion, the development of markerless motion
capture systems originated from the fields of computer vision and machine
learning, where the analysis of human actions by a computer is gaining increas-
ing interest. Potential applications of human motion capture are the driving
force of system development, and the major application areas include smart
surveillance, identification, control, perceptual interface, character animation,
virtual reality, view interpolation, and motion analysis [62, 87]. Over the last
two decades, the field of registering human body motion using computer vi-
sion has grown substantially, and a great variety of vision-based systems have
been proposed for tracking human motion. These systems vary in the number
of cameras used (camera configuration), the representation of captured data,
types of algorithms, use of various models, and the application to specific
body regions and whole body. Employed configurations typically range from
using a single camera [40,51,86] to multiple cameras [30,35,45,46,72].

An even greater variety of algorithms has been proposed for estimating hu-
man motion including constraint propagation [73], optical flow [20,90], medial
axis transformation [17], stochastic propagation [43], search space decomposi-
tion based on cues [35], statistical models of background and foreground [89],
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silhouette contours [52], annealed particle filtering [32], silhouette-based tech-
niques [18, 24], shape-encoded particle propagation [63], and fuzzy clustering
process [60]. These algorithms typically derive features either directly in the
single or multiple 2D image planes [20,43] or, in the case of multiple cameras,
at times utilize a 3D representation [24, 35] for estimating human body kine-
matics, and are often classified into model-based and model-free approaches.
The majority of approaches is model-based in which an a priori model with
relevant anatomic and kinematic information is tracked or matched to 2D
image planes or 3D representations. Different model types have been pro-
posed including stick-figure [51], cylinders [40], super-quadrics [35], and CAD
model [90]. Model-free approaches attempt to capture skeleton features in the
absence of an a priori model. These include the representation of motion in
form of simple bounding boxes [31] or stick-figure through medial axis trans-
formation [17], and the use of Isomaps [25] and Laplacian Eigenmaps [28] for
transforming a 3D representation into a pose-invariant graph for extracting
kinematics. Several surveys concerned with computer-vision approaches have
been published in recent years, each classifying existing methods into different
categories [1, 23, 36, 62, 87]. For instance, Moeslund et al. [62] reviewed more
than 130 human motion capture papers published between 1980 and 2000 and
categorized motion capture approaches by the stages necessary to solve the
general problem of motion capture. Wang et al. [87] provided a similar survey
of human motion capture approaches in the field of computer vision ranging
mainly from 1997 to 2001 with a greater emphasize on categorizing the frame-
work of human motion analysis in low-level vision, intermediate-level vision,
and high-level vision systems.

15.2.1 Utilizing an Articulated Model

The use of a model for identifying a pose and/or individual body segments for
subsequently extracting kinematic information highlights a fundamental shift
in paradigm between marker-based and markerless systems. A marker-based
system typically provides three-dimensional positions of markers attached to
a subject. Markers are typically placed upon the area of interest and subse-
quently processed to gain information. This process includes labeling markers
and establishing a correspondence between markers and the object of inter-
est. Numerous marker protocols have been introduced ranging from simple
link models to point cluster techniques providing a local coordinate frame for
individual body segments. Biomechanical and clinical studies usually utilize
marker-based technology for collecting marker positions and adapt marker
protocols and analysis techniques to the complexity necessary for providing
a valid model for the underlying research question. In comparison, passive
model-based markerless approaches typically match a predefined articulated
model to multiple image sequences. This eliminates the need for labeling and
whole-body kinematics could be obtained instantly. However, since the la-
beling is part of the tracking/matching process, the model needs to contain
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enough detailed description of the area of interest for providing useful infor-
mation for biomechanical and clinical studies. Models introduced in previous
markerless approaches typically suffer accurate detail necessary. This is one
of the main limitations to utilize previous approaches in biomechanical and
clinical practice.

In general, the human body is a very complex system. The skeleton of an
adult human is comprised of 206 bones and two systems, the axial skeleton
(the trunk of our body) and the appendicular skeleton (our limbs) [37]. The
bones themselves are divided up into four classes: long bones (which make
up the limbs), short bones (which are grouped together to strengthen our
skeleton), flat bones (which protect our body and provide a place for muscles
to attach), and irregular bones. Studies on human locomotion are primar-
ily concerned with the interaction among major body segments such as hip,
thigh, shin, foot, trunk, shoulder, upper arm, forearm and hand. There are
basically three types of limb joint in animals and humans. These are the ball
and socket joint (e.g., hip), the pivot joint (e.g., elbow) and the condylar joint
(e.g., knee). The hip joint is located between the pelvis and the upper end of
the femur (thighbone). The hip is an extremely stable ball and socket joint.
The smooth, rounded head of the femur fits securely into the acetabulum,
a deep, cuplike cavity in the pelvis. The shoulder joint complex is in fact
made up by four joints: the glenohumeral joint (the ‘ball-and-socket’ joint be-
tween the upper arm or humerus and the shoulder blade or scapula, that most
sketchy descriptions consider to be the shoulder joint), the acromio-clavicular
joint (the joint between the lateral end of the collar bone or clavicle and the
scapula), the sternoclavicular joint (the joint between the medial end of the
clavicle and the breast bone or sternum) and the scapulo-thoracic joint (the
‘virtual’ joint between the undersurface of the scapula and the chest wall).
There is more movement possible at the shoulder joint than at any other joint
in the body. The elbow joint is a ginglymus or hinge joint. The elbow joint is a
very complex joint that is created by the junction of three different bones (the
humerus of the upper arm, and the paired radius and ulna of the forearm).
Normally these bones fit and function together with very close tolerances.
Two main movements are possible at the elbow. The hinge-like bending and
straightening of the elbow (flexion and extension) happens at the articulation
(“joint”) between the humerus and the ulna. The complex action of turning
the forearm over (pronation or supination) happens at the articulation be-
tween the radius and the ulna (this movement also occurs at the wrist joint).
The wrist is a complex joint composed of 15 bones, four joint compartments
and multiple interconnected ligaments. Working together, these components
allow three-dimensional motion, transmitting forces from the hand to the fore-
arm. The knee is a complex joint, which is made up of the distal end of the
femur (the femoral condyles), and the proximal end of the tibia (the tibial
plateau). The femoral condyles usually roll and glide smoothly on the tibial
plateau, allowing for smooth, painless motion of the lower leg. Accurate knee
movement is quantified using six degrees of freedom (three rotational and
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three translational). The ankle joint complex has two major functional axes,
the subtalar joint axis, determined by talus and calcaneus, and the ankle joint
axis, determined by talus and tibia. Orientation of and movement about the
ankle and the subtalar joint axis are difficult to determine. Foot movement
is often quantified about an anterior–posterior (in- eversion), a medio–lateral
(plantar-dorsiflexion), and an inferior–superior axis (ab-adduction); i.e., axes
that do not correspond to an anatomical joint.

15.2.2 Suitability for Biomechanical Applications

While many existing computer vision approaches offer a great potential for
markerless motion capture for biomechanical applications, these approaches
have not been developed or tested for this applications. To date, qualitative
tests and visual inspections are most frequently used for assessing approaches
introduced in the field of computer vision and machine learning. Evaluating
existing approaches within a framework focused on addressing biomechanical
applications is critical. The majority of research on human motion capture in
the field of computer vision and machine learning has concentrated on track-
ing, estimation and recognition of human motion for surveillance purposes.
Moreover, much of the work reported in the literature on the above has been
developed for the use of a single camera (monocular approach). Single image
stream based methods suffer from poor performance for accurate movement
analysis due to the severe ill-posed nature of motion recovery. Furthermore,
simplistic or generic models of a human body with either fewer joints or re-
duced number of degrees of freedom are often utilized for enhancing compu-
tational performance. For instance, existing methods for gait-based human
identification in surveillance applications use mostly 2D appearance models
and measurements such as height, extracted from the side view. Generic mod-
els typically lack accurate joint information, typically assume all joints to have
fixed centers of rotation for ease of calculation, and thus lack accuracy for ac-
curate movement analysis. However, biomechanical and, in particular, clinical
applications typically require knowledge of detailed and accurate representa-
tion of 3D joint mechanics. Some of the most challenging issues in whole-body
movement capture are due to the complexity and variability of the appearance
of the human body, the nonlinear and nonrigid nature of human motion, a
lack of sufficient image cues about 3D body pose, including self-occlusion as
well as the presence of other occluding objects, and exploitation of multiple
image streams. Human body self-occlusion is a major cause of ambiguities
in body part tracking using a single camera. The self-occlusion problem is
addressed when multiple cameras are used, since the appearance of a human
body from multiple viewpoints is available.

Approaches from the field of computer vision have previously been ex-
plored for biomechanical applications. These include the use of a model-based
simulated annealing approach for improving posture prediction from marker
positions [91] and marker-free systems for the estimation of joint centers [48],
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tracking of lower limb segments [74], analysis of movement disabilities [52,60],
and estimation of working postures [75]. In particular, Persson [74] proposed a
marker-free method for tracking the human lower limb segments. Only move-
ment in the sagittal plane was considered. Pinzke and Kopp [75] tested the
usability of different markerless approaches for automatic tracking and as-
sessing identifying and evaluating potentially harmful working postures from
video film. Legrand et al. [52] proposed a system composed of one camera. The
human boundary was extracted in each image and a two-dimensional model
of the human body, based on tapered super-quadrics, was matched. Marzani
et al. [60] extended this approach to a system consisting of three cameras.
A 3D model based on a set of articulated 2D super-quadrics, each of them
describing a part of the human body, was positioned by a fuzzy clustering
process.

These studies demonstrate the applicability of techniques in computer vi-
sion for automatic human movement analysis, but the approaches were not
validated against marker-based data. To date, the detailed analysis of 3D joint
kinematics through a markerless system is still lacking. Quantitative measure-
ments of movement and continuous tracking of humans using multiple image
streams is crucial for 3D gait studies. Previous work in the field of computer
vision was an inspiration for our work on tracking an articulated model in
visual hull sequences. A markerless motion capture system based on visual
hulls from multiple image streams and the use of detailed subject-specific 3D
articulated models with soft-joint constraints is demonstrated in the following
section. Articulated models have been used for popular tasks such as char-
acter animation [3, 53], and object tracking in video [20, 40] and in 3D data
streams [24, 54]. Our soft-joint constraints approach allows small movement
at the joint, which is penalized in least-squares terms. This extends previ-
ous approaches [20, 24] for tracking articulated models that enforced hard
constraints on the kinematic structure (joints of the skeleton must be pre-
served). To critically analyze the effectiveness of markerless motion capture in
the biomechanical/clinical environment, data obtained from this new system
was quantitatively compared with data obtained from marker-based motion
capture.

15.3 Markerless Human Movement Analysis
Through Visual Hull and Articulated ICP
with Soft-joint Constraints

Our approach employs an articulated iterative closest point (ICP) algorithm
with soft-joint constraints [11] for tracking human body segments in visual
hull sequences (a standard 3D representation of dynamic sequences from
multiple images). The soft-joint constraints approach extends previous ap-
proaches [20,24] for tracking articulated models that enforced hard constraints
on the joints of the articulated body. Small movements at the joint are allowed
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and penalized in least-squares terms. As a result a more anatomically correct
matching suitable for biomechanical applications is obtained with an objective
function that can be optimized in an efficient and straightforward manner.

15.3.1 Articulated ICP with Soft-joint Constraints

The articulated ICP algorithm is a generalization of the standard ICP algo-
rithm [16, 78] to articulated models. The objective is to track an articulated
model in a sequence of visual hulls. The articulated model M is represented as
a discrete sampling of points p1, . . . , pP on the surface, a set of rigid segments
s1, . . . , sS , and a set of joints q−1, . . . , qQ connecting the segments. Each vi-
sual hull is represented as a set of points V = v1, . . . , vN , which describes the
appearance of the person at that time. For each frame of the sequence, an
alignment T is computed, which brings the surfaces of M and V into corre-
spondence, while respecting the model joints q. The alignment T consists of
a set of rigid transformations Tj , one for each rigid part sj . Similar to ICP,
this algorithm iterates between two steps. In the first step, each point pi on
the model is associated to its nearest neighbor vs(i) among the visual hull
points V , where s(i) defines the mapping from the index of a surface point pi

to its rigid part index. In the second step, given a set of corresponding pairs
(pi, vs(i)), a set of transformations T is computed, which brings them into
alignment. The second step is defined by an objective function of the trans-
formation variables given as F (T ) = H(T ) + G(T ). The term H(T ) ensures
that corresponding points (found in the first step) are aligned.

H(r, t) = wH

P∑
i=1

‖R(rs(i))pi + ts(i) − vi‖2 (15.1)

The transformation Tj of each rigid part sj is parameterized by a 3x1 trans-
lation vector tj and a 3x1 twist coordinates vector rj (twists are standard
representations of rotation (Ma, Soatto et al. 2004)), and R(rs(i)) denotes the
rotation matrix induced by the twist parameters rs(i). The term G(T ) ensures
that joints are approximately preserved, where each joint qi,j can be viewed
as a point belonging to parts si and sj simultaneously. The transformations
Ti and Tj are forced to predict the joint consistently.

G(r, t) = wG

∑
(i,j)∈Q

‖R(ri)qi,j + ti −R(rj)qi,j − tj‖2 (15.2)

Figure 1: (a) Point-to-point associations used to define the energy H(T).
(b) Illustration of the joint mismatch penalty G(T ).

Linearizing the rotations around their current estimate in each iteration
resulted in a standard least-squares function over the transformation parame-
ters (r, t)

argmin = ‖A[
r
t] − b‖ ⇒ [

r
t] = (ATA)−1AT b
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where A is a matrix, and b is a vector whose values are dictated by Equa-
tions 15.1 and 15.2. Decreasing the value of wG allows greater movement at
the joint, which potentially improves the matching of body segments to the
visual hull. The center of the predicted joint locations (belonging to adjacent
segments) provides an accurate approximation of the functional joint cen-
ter. As a result, the underlying kinematic model can be refined and a more
anatomically correct matching is obtained.

15.3.2 Methods

The algorithm was evaluated in a theoretical and experimental environ-
ment [68, 69]. The accuracy of human body kinematics was evaluated by
tracking articulated models in visual hull sequences. Most favorable camera
arrangements for a 3 × 1.5 × 2 m viewing volume were used [67]. This view-
ing volume is sufficiently large enough to capture an entire gait cycle. The
settings wH = 1, wG = 5000 (Equations 15.1 and 15.2) were used to un-
derscore the relative importance of the joints. The theoretical analysis was
conducted in a virtual environment using a realistic human 3D model. The
virtual environment permitted the evaluation of the quality of visual hulls on
extracting kinematics while excluding errors due to camera calibration and
fore-/background separation. To simulate a human form walking, 120 poses
were created using Poser (Curious Labs, CA) mimicking one gait cycle. The
poses of the human form consisted of 3D surfaces and had an average volume
of 68.01±0.06 liters. Visual hulls of different quality using 4, 8, 16, 32 and 64
cameras with a resolution of 640x480 pixels and an 80-degree horizontal view
were constructed of the Poser sequence. In the experimental environment, full
body movement was captured using a marker-based and a markerless mo-
tion capture system simultaneously. The marker-based system consisted of an
eight-Qualisys camera optoelectronic system monitoring 3D marker positions
for the hip, knees and ankles at 120 fps. The markerless motion capture sys-
tem consisted of eight Basler CCD color cameras (656x494 pixels; 80-degree
horizontal view) synchronously capturing images at 75 fps. Internal and exter-
nal camera parameters and a common global frame of reference were obtained
through offline calibration. Images from all cameras were streamed in their
uncompressed form to several computers during acquisition.

The subject was separated from the background in the image sequence
of all cameras using intensity and color thresholding [38] compared to back-
ground images (Figure 15.1). The 3D representation was achieved through
visual hull construction from multiple 2D camera views [26, 49, 59]. Visual
hulls were created with voxel edges of λ = 10 mm, which is sufficiently small
enough for these camera configurations [66]. The number of cameras used for
visual hull construction greatly affects the accuracy of visual hulls [67]. The
accuracy of visual hulls also depends on the human subjects position and pose
within an observed viewing volume [67]. Simultaneous changes in position and
pose result in decreased accuracy of visual hull construction. Increasing the
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Fig. 15.1. (a) Separated subject data in selected video sequences. (b) Camera
configuration, video sequences with separated subject data, and selected visual hulls.

Fig. 15.2. (a) 3D point surface. (b) Body segments. (c) Joint centers. (d) Articulated
model.

number of cameras leads to decreased variations across the viewing volume
and a better approximation of the true volume value.

A subject-specific 3D articulated model was tracked in the 3D representa-
tions constructed from the image sequences. An articulated model is typically
derived from a morphological description of the human bodys anatomy plus a
set of information regarding the kinematic chain and joint centers. The mor-
phological information of the human body can be a general approximation
(cylinders, super-quadrics, etc.) or an estimation of the actual subjects outer
surface. Ideally, an articulated model is subject-specific and created from a
direct measurement of the subjects outer surface. The kinematic chain under-
neath an anatomic model can be manually set or estimated through either
functional [18, 27] or anthropometric methods [4, 14]. The more complex the
kinematic description of the body the more information can be obtained from
the 3D representation matched by the model. As previously discussed, while
in marker-based systems the anatomic reference frame of a segment is ac-
quired from anatomical landmarks tracked consistently through the motion
path, in the markerless system the anatomical reference frames are defined by
the model joint centers and reference pose. During the tracking process, the
reference frames remain rigidly attached to their appropriate model anatomic
segment, thus describing the estimated position and orientation in the sub-
ject’s anatomic segments. In this study, an articulated body was created from
a detailed full body laser scan with markers affixed to the subjects joints
(Figure 15.2). The articulated body consisted at least of 15 body segments
(head, trunk, pelvis, and left and right arm, forearm, hand, thigh, shank and
foot) and 14 joints connecting these segments. These articulated models are
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well-suited for accurately describing lower limb kinematics. In particular, the
knee joint is defined as a joint with 6 DOF. However, the current description
lacks details for the upper body. For example, the shoulder is considered as a
single joint of 6 DOF and not as a complex structure of 3 individual joints.

The subjects pose was roughly matched based on a motion trajectory to
a frame in the motion sequence and subsequently tracked automatically over
the gait cycle. The motion trajectory was calculated as a trajectory of center
of volumes obtained from the volumetric 3D representations for each frame
throughout the captured motion. Several motion sequences typically per-
formed by subjects and patients in a gait laboratory were processed. In addi-
tion, more complex sport sequences such as a cricket bowl, handball throw and
car wheel performance were analyzed. Joint center locations were extracted
for all joints and compared to joint centers from the theoretical sequence.
Accuracy of joint center location was calculated as the average Euclidian dis-
tance between corresponding joints. Joint centers of adjacent segments were
used to define segment coordinate axes. Joint angles for the lower limbs for
the sagittal and frontal planes were calculated as angles between correspond-
ing axes of neighboring segments projected into the corresponding planes.
Accuracy of human body kinematics was calculated as the average deviation
of the deviation of joint angles derived from visual hulls compared to joint
angles derived from the theoretical sequence and marker-based system over
the gait cycle, respectively. The joint angles (sagittal and frontal plane) for
the knee calculated as angles between corresponding axes of neighboring seg-
ments are used as preliminary basis of comparison between the marker-based
and markerless systems.

Motion sequences were primarily tracked with a subject-specific articu-
lated body consisting of subject-specific morphology and joint center locations.
However, the creation of articulated bodies lead to a database of subject-specific
articulated bodies. Additional, motion sequences were processed with a model
from this database that would match the subject closest based on a height
measurement. The settings wH = 1 and wG = 1 were used to grant the lack of
detailed knowledge of the morphology and kinematic chain.

15.4 Results

The number of cameras used for visual hull construction greatly affects the
accuracy of visual hulls [67]. Surface comparison between visual hulls and the
original human form revealed under-approximated and over-approximated re-
gions. Under-approximated regions result from discretization errors in the im-
age plane, which can be reduced with higher imager resolution [66]. However,
greater error arises from over-approximated regions, which are characteristic
to visual hull construction. The size of over-approximated regions and the
maximum surface deviations decreases with increasing number of cameras
(Figure 15.3).
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Fig. 15.3. Surface deviations between visual hulls and the original human form for
different circular camera arrangements with 4 (a), 8 (b), 16 (c), 32 (d), and 64 (e)
camera. Colors indicate the deviation calculated as shortest distance. Colors ranging
from cyan to blue indicate areas that are under-approximated and colors ranging
from yellow to red indicate areas that are over-approximated.

Fig. 15.4. Tracking an articulated body in (a) the Poser and (b–d) visual hull
sequences constructed with 64, 8 and 4 cameras.

The accuracy of visual hulls also depends on the human subjects position
and pose within the investigated viewing volume [67]. Simultaneous changes
in position and pose result in decreasing the accuracy of visual hulls. Increas-
ing the number of cameras leads to decreasing variations across the viewing
volume and in a better approximation of the true volume value.

Body segments were tracked accurately in the original Poser sequence
(Figure 15.4a). The accuracy of tracking increased with increasing the number
of cameras. While all body segments were positioned correctly with 8 to 64
cameras (Figures 15.4b, c), several body segments such as upper limbs were
positioned incorrectly with 4 cameras (Figure 15.4d).

Furthermore, the employed articulated ICP algorithm estimated joints
centers in the original sequence very accurately (Table 15.1). Joint centers in
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Table 15.1. Accuracy of joint center locations [mm] and standard deviation
obtained through articulated ICP in the visual hull sequences constructed using
64, 8 and 4 cameras.

Poser 64 8 4

Full body 1.9 ± 3.7 10.6 ± 7.8 11.3 ± 6.3 34.6 ± 67.0
Lower limbs 0.9 ± 1.2 8.7 ± 2.2 10.8 ± 3.4 14.3 ± 7.6

Fig. 15.5. Articulated body matched to visual hulls. (a) Human body segments.
(b) Kinematic chain.

the visual hull sequences constructed using 8 and 64 cameras were predicted
with an accuracy that matches the in-plane camera accuracy of magnitude
of approximately 1 cm. Joint centers in the visual hull sequences constructed
using 8 and 64 cameras were predicted with similar accuracy, while the over-
all joint center accuracy drastically declines with visual constructed using 4
cameras due to the inaccurate tracking of upper limbs (Figure 15.4). Joint
centers for the lower limbs, in particular hip, thighs, shanks and feet were
predicted more accurately than for the overall articulated model. Joint center
locations for visual hulls constructed with 8 and 64 cameras were estimated
within the in-plane camera resolution (Table 15.1). Joint center estimation for
lower limbs in visual hull constructed using 4 cameras were estimated less ac-
curate than using higher number of cameras, but still resulted in comparable
results (Table 15.1).

Body segments were tracked accurately with the occasional exception of
hands and feet due to inaccuracies in the visual hulls (Figure 15.5). Compa-
rable results were obtained for knee joint angles in the sagittal and frontal
plane using marker-based and markerless motion capture (Figure 15.6). The
accuracy of sagittal and frontal plane knee joint angles calculated from exper-
iments was within the scope of the accuracy estimated from the theoretical
calculations (accuracyexperimental: 2.3 ± 1.0◦ (sagittal); 1.6 ± 0.9◦ (frontal);
accuracytheoretical: 2.1±0.9◦ (sagittal); 0.4±0.7◦ (frontal); [68,69]). A similar
method, with different model matching formulation and limited to hard-joint
constraints, was recently explored by the authors [29]. This method utilized
simulated annealing and exponential maps to extract subjects kinematics, and
resulted in comparable accuracy.
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Fig. 15.6. Motion graphs for (a) knee flexion and (b) knee abduction angles.

15.5 Summary of Chapter

The development of markerless motion capture methods for biomechanical
and clinical applications is motivated by the need to address contemporary
needs to understand normal and pathological human movement without the
encumbrance of markers or fixtures placed on the subject, while achieving
the quantitative accuracy of marker-based systems. Markerless motion capture
has been widely used for a range of applications in the surveillance, film and
game industries. However, the biomechanical, medical, and sports applications
of markerless capture have been limited by the accuracy of current methods
for markerless motions capture.

Previous experience has demonstrated that minor changes in patterns of
locomotion can have a profound impact on the outcome of treatment or pro-
gression of musculoskeletal pathology. The ability to address emerging clinical
questions on problems that influence normal patterns of locomotion requires
new methods that would limit the risk of producing artifact due to markers
or the constraints of the testing methods. For example, the constraints of the
laboratory environment as well as the markers placed on the subjects can
mask subtle but important changes to the patterns of locomotion. It has been
shown that the mechanics of walking was changed in patients with anterior
cruciate ligament deficiency of the knee [6, 10]; functional loading influenced
the outcome of high tibial osteotomy [76]; functional performance of patients
with total knee replacement was influenced by the design of the implant [5],
and the mechanics of walking influenced the disease severity of osteoarthritis
of the knee [10, 64, 65, 82]. It should be noted that each of the clinical exam-
ples referenced above were associated with subtle but important changes to
the mechanics of walking.

The work cited above indicates several necessary requirements for the next
significant advancement in our understanding of normal and pathological hu-
man movement. First, we need to capture the kinematics and kinetics of
human movement without the constraints of the laboratory or the encum-
brance of placing markers on the limb segments. Second, we need to relate
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the external features of human movement to the internal anatomical struc-
tures (e.g., muscle, bone, cartilage, and ligaments) to further our knowledge
of musculoskeletal function and pathology.

This chapter demonstrates the feasibility of accurately and precisely mea-
suring 3D human body kinematics for biomechanical applications using a
markerless motion capture system on the basis of visual hulls. Passive vi-
sion systems are advantageous as they only rely on capturing images and
thus provide an ideal framework for capturing subjects in their natural en-
vironment. The 3D representation of the subject in the form of visual hulls
can also be utilized further for anthropometric measurements such as body
segment volumes. The ultimate goal for biomechanical applications is to mea-
sure all functional degrees of freedom that describe the mechanics of a par-
ticular joint (e.g., flexion/extension, ab/adduction, internal/external rotation
and anterior/posterior translation at the knee). Accuracy of markerless meth-
ods based on visual hulls is dependent on the number of cameras. In general,
configurations with fewer than 8 cameras yielded several drawbacks. Volume
estimations greatly deviated from original values and fluctuated enormously
for different poses and positions across the viewing volume.

The employed algorithm yields great potential for accurately tracking hu-
man body segments. The algorithm does not enforce hard constraints for
tracking articulated models. The employed cost function consists of two terms,
which ensure that corresponding points align and joint are approximately
preserved. The emphasis on either term can be chosen globally and/or in-
dividually, and thus yields more anatomically correct models. Moreover, the
presented algorithm can be employed by either fitting the articulated model to
the visual hull or the visual hull to the articulated model. Both scenarios will
provide identical results in an ideal case. However, fitting data to the model is
likely to be more robust in an experimental environment where visual hull only
provide partial information due to calibration and/or segmentation errors.

Limitations of this study are the use of an articulated model consisting of
rigid segments. However, inaccuracies in visual hull construction, in particular
using 4 and 8 cameras, outweigh segment deformations in the living human.
Moreover, the articulated model is given, but could potentially be constructed
automatically and accurately with an appropriate number of cameras for the
specific viewing volume. Hence, rather than using two separate systems for
capturing human shape and human motion, one multi-camera system can be
used for both tasks. Furthermore, a well-known problem with ICP methods is
that they are prone to local minima, and depend on having a reasonable initial
estimate of the transformations T. We are currently extending the approach
with a search method which has the capability to get out of local minima.
Also, our current model does not explicitly limit the amount of joint rotation.
Thus, symmetrical body parts such as the forearm may be rotated around
their axis of symmetry. There was enough surface detail in our surface models
to prevent this from happening.
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This chapter systematically points out that choosing appropriate technical
equipment and approaches for accurate markerless motion capture is critical.
The processing modules used in this study including background separation,
visual hull, iterative closest point methods, etc. yielded results that were com-
parable to a marker-based system for motion at the knee. While additional
evaluation of the system is needed, the results demonstrate the feasibility of
calculating meaningful joint kinematics from subjects walking without any
markers attached to the limb. This study also demonstrated the potential for
markerless methods of human motion capture to address important clinical
problems. Future improvements will allow the extraction of not only kinematic
but also kinetic variables from the markerless motion capture system. Our re-
search currently focuses primarily on accurately capturing the 6 DOF for the
knee. The current model description provides sufficient degrees of freedom for
the lower limbs, but needs to be extended for accurate analysis of the upper
body. Moreover, utilizing a subject-specific morphology and kinematic chain
provides an ideal starting point for tracking a reference model in a dynamic
sequence. However, the creation of subject-specific models seems to be infea-
sible for clinical environments. Our future work will address utilizing accurate
articulated models from a database and/or the use of functional methods to
accurately determine the underlying kinematic chain.

The markerless framework introduced in this chapter can serve as a basis
for developing the broader application of markerless motion capture. Each of
the modules can be independently evaluated and modified as newer methods
become available, thus making markerless tracking a feasible and practical
alternative to marker based systems. Markerless motion capture systems offer
the promise of expanding the applicability of human movement capture, mini-
mizing patient preparation time, and reducing experimental errors caused by,
for instance, inter-observer variability. In addition, gait patterns can not only
be visualized using traces of joint angles but sequences of snapshots can be
easily obtained that allow the researcher or clinician to combine the qualitative
and quantitative evaluation of a patients gait pattern. Thus, the implementa-
tion of this new technology will allow for simple, time-efficient, and potentially
more meaningful assessments of gait in research and clinical practice.
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Summary. Two different approaches for the assessment of an individual’s
movement capabilities and physical activity are available and have to be clearly
distinguished:

1. Clinical gait analysis is a laboratory-based, i.e., stationary procedure that
enables a qualitative assessment, i.e., it describes how well patients are able
to move or how much they are limited in their movement capabilities.

2. Activity assessment in daily life, ADL-monitoring is not confined to a lab
environment and assesses the quantity of movement or the activity level by
describing how much patients are using their individual capabilities and which
level of mobility is being used.

Both approaches have their specific advantages and disadvantages, which have to be
considered before application of either one. However, they may be complementary
for a full description of an individual’s movement characteristics. In the future,
marker-less motion capturing systems might offer an alternative approach halfway
between the existing one, i.e., these systems might provide detailed motion analysis
in home-based environments.

16.1 Introduction

The observation and analysis of human and animal motion has always been
a central interest of researchers from various disciplines. As early as in the
4th century B.C. the Greek philosopher Aristotle was concerned with various
aspects of locomotion of different species of animals and sought reasons for
bipedal and quadruped gait patterns. He was the first to realize that locomo-
tion can only take by some mechanical action against the supporting surface,
i.e., action and reaction. In the 15th and 16th century, the famous and multi-
talented scientist-artist Leonardo da Vinci studied the human body in detail,
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performed anatomical studies and described the mechanical aspects during
various movements and drew lines of action and centers of gravity into his
sketches. In the 17th century, Giovanni Alfonso Borelli performed detailed
calculations on the mechanics of muscles and their moment arms. Three-
dimensional movement analysis is also not an invention of modern times.
The first quantitative analysis was already performed in the late 19th cen-
tury in a collaborative approach of the Prussian army that was interested
in the effect of internal loading changes induced by the equipment of mili-
tary recruits. It was based on the successful cooperation between the German
anatomist Wilhelm Braune (1831–1892) and the mathematician Otto Fischer
(1861–1917). This first approach was extremely time-consuming with respect
to preparing the subject (only a single subject was used; Figure 16.1) and
analyzing the measurements which took several months of computing time
for just a few steps [1].

Since these times, the methods for investigating human movements have
become more sophisticated and have greatly benefited from the rapid improve-
ments in computer technology and software developments [3]. Therefore, it
is time to reconsider whether gait analysis has achieved a solid standing in
clinical practice and where recent and future developments might lead to new
and promising possibilities.

Fig. 16.1. Instrumented subject of the first three-dimensional movement analysis
performed by Wilhelm Braune and Otto Fischer in 1895 [1].
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16.2 Development and Aims of Clinical Gait Analysis

With an array of cameras and passive or active marker systems, a patient’s
movement can be captured in the calibrated laboratory environment for per-
forming full-body three-dimensional clinical gait analysis (Figure 16.2). Stan-
dard marker sets and biomechanical models (e.g., Helen-Hayes or Cleveland
Clinic recommendations) are usually applied to extract parameters of inter-
est which will be used to describe the motion characteristics or identify and
understand possible causes of movement disorders [3].

Recent technological developments have helped to reduce the processing
times so that clinical gait analysis nowadays can be considered as a standard
tool in well-equipped research labs [3]. Nevertheless, there is an ongoing de-
bate about its usefulness and clinical relevance. Certain areas have greatly
benefited from the additional information, e.g., the planning of multilevel
surgery in children suffering from cerebral palsy [2]. In these patients, the
impaired central control of the peripheral body segments can eventually lead
to malfunctions and deformities causing severe orthopaedic problems that re-
quire surgical interventions concerning soft tissue and/or bony structures. On
the other hand, in some less-justified applications the scientists have been
accused of having been driven by the availability of instrumentation rather

Fig. 16.2. Left: Schematic of the experimental set-up with a 6-camera Motion
Analysis Inc. system in the Münster Movement Analysis Lab. Right: Subject
equipped with reflective markers attached according to the Helen-Hayes marker set
as seen by the cameras, i.e., with the markers clearly visible but no details of the
human body distinguishable.
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than a clinically relevant approach (“technology searching for application”). A
persisting problem is the fact that no “hard data” exists with respect to nor-
mative values for comparison with pathological populations that would allow
for a distinction between normal and abnormal gait patterns or judgment of
the degree of impairment. In general, a complete gait analysis provides a vast
amount of data: A spatial resolution of 1 mm results in a data flow of 106 bits
of information per second. Since the human brain is able to directly process
only 10 bits of information per second it is imperative to reduce or condense
the data in order to extract the main characteristics of a single patient or a
group of subjects [11]. The 3-dimensional observation of the moving object
enables a detailed description of the individual’s performance during walking.
Comparisons between the clinically affected and healthy side or between a
patient and a control group are used to detect the cause for movement dis-
orders. In order to achieve this goal, gait analysis of the whole human body
is usually performed in the anatomical planes of motion (frontal, sagittal,
transverse) and considers different body segments (ankle, knee, and hip joint;
pelvis, trunk, arm) as well as kinematic and kinetic parameters (joint motion,
joint moment and power). This level of data recording and reduction can
be performed with current gait analysis systems in a matter of about a few
hours, which has helped greatly to provide a fast feedback in clinical settings.
Nevertheless, there is a need for expert knowledge in order to extract mean-
ingful information that is needed for clinical decision-making, i.e., provide
information about over-loading or malfunctioning. With recent gait analy-
sis systems patients with specific injuries or diseases can be assessed before
and/or after treatment with respect to quality control issues of conservative
or surgical treatment options [3]. This way, additional objective information
about the individual functional capabilities is available so that the judgment
of outcome is not limited to subjective feedback from the patient or conven-
tional clinical and radiographic assessment which are usually based on static
measures.

16.3 Applications of Clinical Gait Analysis

As mentioned above, the most common application is in children with cerebral
palsy where gait analyses are used for clinical decision-making. A study in 91
CP patients showed that the additional use of gait-analysis data resulted in
changes in surgical recommendations in 52% of the patients and reduced the
cost of surgery [4]. Another benefit pointed out by the authors was related
to preventing inappropriate surgical decisions, which they considered as more
likely without gait analysis. Another study supported these findings show-
ing that 39% of procedures recommended before gait analysis were not done
when the gait laboratory data were considered. On the other hand, an addi-
tional 110 procedures (1.6 per patient) that had not been recommended before
the gait study ultimately were performed after addition of the gait laboratory



16 Qualitative and Quantitative Aspects of Movement 405

data [10]. A different topic was addressed by an earlier study by Prodromos et
al. The authors investigated the clinical outcome in 21 patients with high tibial
osteotomy with respect to their knee-joint loading during gait before and af-
ter surgery. The results indicate that of preoperative walking characteristics,
in particular the knee adduction moment, were associated with postopera-
tive clinical results. The low adduction-moment group had significantly lower
postoperative adduction moments and had better clinical results than did pa-
tients with high adduction moments. Based on these results the authors saw
the ability to predict the clinical outcome based on preoperative gait analysis
data [12]. Another important area of application is the evaluation of clinical
outcome after surgical or conservative treatment. An example for the effec-
tiveness of physiotherapy and gait retraining was related to the problem of hip
dysplasia. In this study, the “Entlastungsgang” was introduced for unloading
the hip joint (Figure 16.3). Sixteen hip dysplasia patients received daily gait
training combined with intensive physical therapy for 3–4 weeks. The hip ab-
duction torque acting was determined by clinical gait analysis before, during
and after the gait training. Gait training resulted in a torque reduction to
77.2% of the initial value [13]. Another study that was performed in our lab

Fig. 16.3. Schematic description of the changes in the hip abduction moment during
single stance in normal (left) and modified gait (right; the “Entlastungsgang”) [13].
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investigated patients before and after rotationplasty [8, 9]). This is a surgical
treatment option that may be indicated in patients with bone tumors of the
lower extremity when the affected bone including the knee joint has to be
resected and the remaining shank segment is reattached to the thigh after
rotating the foot by 180o. The former ankle joint takes over the function of
the former knee joint and the shortened extremity is equipped with a foot
prosthesis and an adapter to regain a comparable limb length. These patients
have to learn how to load the extremity and to control the “new” knee joint in
spite of this specific anatomical situation. Initially, patients are cautious and
insecure which is reflected in their gait patterns. After few months, however,
they usually learn to adapt to the new situation and regain confidence in their
walking abilities so that the gait patterns become more normal and natural.
In these cases, gait analysis can be used document the individual progress of
single patients (Figure 16.4).

Fig. 16.4. Example of a longitudinal evaluation of a patient with lower leg pros-
thesis after rotationplasty in the affected leg (grey) and contra-lateral leg (black)
approximately three months (top) and six months after surgery (bottom). (a) verti-
cal ground reaction forces [N/BW]; (b) knee joint flexion-extension motion [degree];
(c) hip joint flexion-extension motion [degree]. The changes in the parameters indi-
cate a clear improvement of joint motion and loading with longer follow-up [y-axis =
percent of gait cycle]. Other areas of application include pre- and postoperative mea-
surements in patients receiving specific hip prostheses [14], hip revision surgery [7]
or knee arthroplasty with a minimally invasive approach [5] or a new prosthetic
design [6].
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16.4 Potential Limitations of Clinical Gait Analysis

When performing clinical movement analysis certain issues should be consid-
ered: Besides the potential limitations caused by instrumentation, i.e., marker
and/or soft tissue movements causing a certain artifact, or kinematic crosstalk
there are also the procedural limitations caused by investigations of a subject
under laboratory conditions. It has been postulated that the measurement
tools should not alter the function that is being assessed. It has to be realized
however that the patient under observation may be affected or even intim-
idated by the specific circumstances in the gait lab and may therefore not
present his natural movement pattern. Furthermore, the attempt to maintain
a constant walking speed or to hit the force plate might further disturb the in-
dividuals natural gait pattern. Clinical gait analysis might reveal the best per-
formance under ideal conditions and the patient will probably try to present
the best possible gait performance under these “artificial” lab conditions. It is
not clear how this compares to the activities that are being performed in daily
life, when not under surveillance of several cameras. Therefore, the results ob-
tained in the gait lab might have to be considered as best-case possibilities
of how well an individual patient is able to move or walk. This may or may
not at all be related to how the patient takes advantage of this potential, i.e.,
how much this patient is actually walking. It remains unclear how indicative
this is of his or her activities in daily life (ADL).

16.5 Assessment of Daily Life Activities

If both of the above mentioned aspects are of interest the quality as well as
the quantity of gait have to be assessed. This implies that the methods for
clinical gait analysis have to be complemented by methods for the assessment
of activities in daily life (ADL). A wide array of tools is available for the
assessment of ADL activities. The available systems can be distinguished by
their measuring techniques. The most common technique in the last decades
are subjective questionnaires, diaries or interviews that have been utilized in
a wide range of studies investigating subjects’ self-reported activities in daily
life. A common and fairly simple method is to ask the patient or subject to fill
out a retrospective questionnaire about the activities performed in a certain
time frame (i.e., the last week or two). However, these procedures have been
tested for reliability and were shown to suffer from bad accuracy because the
individual activities are not well remembered or are influenced by subjectivity,
i.e. they might reflect how much a subject might have wanted to be active.
On the other end of the spectrum are direct observations or video recordings
of a subject which are highly accurate and valid but are not very practical
or feasible because they require a high effort with respect to recording and
analyzing the activities (Figure 16.5).
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Fig. 16.5. Available methods for activity assessment arranged according to their
feasibility and validity. More recently, pedometers have been developed for mechan-
ically detecting impacts during locomotion. Pedometers differ in their construction
details as well as their accuracy, although the manufacturers propose also an accept-
able estimation of physiologic parameters such as energy consumption.

Recently, body-fixed sensors have been developed with a wide range of
shapes and technical specifications. The devices are based on acceleration
and/or gyroscopic sensors and can usually store information in a small, light-
weight data logger for extended periods (from 24 hour measurements up to
several weeks). These activity monitors generally use uni- or triaxial accelera-
tion sensors sensitive to body motion and/or gravity. Other available systems
are based on ultrasound sensors. The advantage of body-fixed sensors is that
they allow movement free of restrictions for the subject. The measurements
are not confined to a calibrated laboratory space and can record the individual
activity behavior in the subject’s natural home and work environment. Thus,
the daily activity level can be assessed under realistic conditions. The only
confounding effect might be caused by the patients’ awareness about the scope
of the measurements so that they might feel especially motivated to reveal a
movement pattern that is more active than usual. Therefore, these measure-
ments should be carried out over repeated days (at least one week would
be desirable) so that potential differences between normal working days or
weekend days with more leisure time would be detected. The Dynaport ADL-
monitor developed by McRoberts B.V. (The Hague, The Netherlands) consists
of three sensors measuring acceleration induced by body motion and gravity
(Figure 16.6). The subject wears two sensors, measuring horizontal and ver-
tical acceleration of the upper body, in a belt around the waist, containing
also the battery supply and data logger. The third sensor, worn underneath
the trousers and connected to the logger via a cable, is measuring horizon-
tal acceleration of the left thigh. The signals of all sensors are processed by
algorithms and automatically classified, for example to distinguish between
locomotion, standing, sitting or lying [15,16].
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Fig. 16.6. The signals of the Dynaport sensors are automatically classified into
locomotion (red), standing (dark blue), sitting (light blue) and lying (yellow).

Data can be stored for longer periods up to several months depending on
the activity level of the subjects and the recording intervals. In most cases,
the manufacturers offer classification algorithms converting the raw data to
activity parameters (walking, bicycling, gait velocity, distances) or posture
categories (standing, sitting, and lying). Lab-based methods offer a valid es-
timation of energy expenditure or can be considered as gold standard in non-
lab-based methods, such as direct observation or doubly labeled water (DLW).
In the latter technique water is labeled (hydrogen and oxygen are replaced
with an uncommon isotope, usually with the heavy non-radioactive forms of
the elements deuterium and oxygen-18) for tracking purposes in order to allow
for measurement of the metabolic rate or energy expenditure over a period of
time. Consequently, the method has to be chosen carefully according to the
specific aim of a study regarding the validity of the outcome and feasibility.
Detailed overviews of these methods can be found elsewhere [17–25]. The sen-
sor and recording systems are usually less expensive as compared to the more
complex and elaborate 3-dimensional gait analysis systems and they do not
required large lab space. Therefore, these small, robust, lightweight and less
expensive systems are characterized by good cost-effectiveness and wide-range
availability. The range of sensors starts with simple and cheap step counters
that are worn at the waist and only count the number of steps that the device
registers. Due to their simplicity, these devices can be manipulated easily by
the subject and may therefore be too unreliable for scientific purposes. Fur-
thermore, the display indicates the number of steps only and no additional
timing information is provided so that no further analyses with respect to the
actual activity behavior during the day are possible. Finally, the information
is visible for the patient, which may be an advantage or disadvantage depend-
ing on whether motivational issues are desirable, or not. More sophisticated
step counter systems are based on uni-, bi-, or tri-axial accelerometers and
store the information about the steps and a time log so that the information
can be read out after the recording period. The timing information allows
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detecting when there are active and less active phases in the daily schedule.
This way, differences between work-related and leisure-time activity, between
weekdays and weekend-days, or seasonal changes in the activity patterns can
be assessed. The basic level of information provides a step count only and
more detailed information can be gained when step frequencies or movement
intensities are distinguished.

16.6 Clinical Applications of Activity Assessments

The daily activities patients suffering from hip or knee osteoarthritis (OA)
were monitored with two systems prior to joint replacement surgery. The
subjects wore the DynaPort ADL-monitor for one day and the Step-Activity-
Monitor (Cyma Inc., USA) for seven consecutive days. The Step-Activity-
Monitor (SAM) is a lightweight and comfortable device which includes an
acceleration sensor and interprets acceleration above a specific threshold as
steps of the right leg Brandes, 2004 No.172. The SAM is adjustable to indi-
vidual gait parameters and showed accuracy around 97% [26, 27]. The steps
of one foot, in other words, gait cycles are stored in 1-minute-intervals thus
enabling a computation of walking intensity in terms of minutes walked with
a specific number of gait cycles per minute (Figure 16.7).

Fig. 16.7. The Step-Activity-Monitor stores the number of gait cycles (y-axis) in 1-
minute-intervals (bars at x-axis) up to several months and provides detailed reports
for each day.
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Fig. 16.8. Differences regarding intensity categories between OA patients and
healthy subjects (*=p¡0.05, **=p¡0.01).

The time spent for locomotion measured by the ADL-monitor was lower in
OA patients (10.5%) compared to healthy adults (11.1%). For the patients, the
SAM detected only 4782 (SD 2116) gait cycles per day on average in contrast
to 6616 (SD 2387) gait cycles per day in healthy subjects. A closer look at the
intensities used in daily life revealed fewer minutes in all intensity categories
for the OA patients compared to healthy adults (Figure 16.8). Furthermore,
correlation coefficients were computed between the gait parameters assessed
with the 3D gait analysis in the lab and the activity parameters measured
with the ADL und SAM. Surprisingly, no relevant correlations could be found
between lab and non-lab parameters. Thus, the findings of this study show
that patients with less movement limitations in lab-based measurements are
not inevitably more active in daily life than more severely limited patients.
Furthermore, the results show that OA causes the subjects to walk less as well
as slower than healthy subjects.

Another study investigated the outcome of limb salvage surgery in 22
patients (mean age 35, SD 18 years) suffering from a malignant tumor in
the proximal tibia or distal femur. After resection of the knee joint and the
affected parts of the tibia or femur the defects were reconstructed with a
modular knee joint prosthesis (MUTARS). To evaluate the activity level of
patients after limb salvage surgery, the patients were measured 5.6 (SD 4.1)
years after treatment with the DynaPort ADL-monitor and the SAM. The pa-
tients spent less time for locomotion (9.9%) as compared to healthy subjects
(11.1%). Similar to the previously described study, the patients performed
also fewer gait cycles per day (4,786, SD 1,770) than healthy subjects (6,616,
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SD 2,387). Compared to healthy subjects the tumor patients did not reach the
same activity level as in their daily life even five years after surgery. Compared
to amputees, on the other hand, limb salvage surgery offers a life with a mod-
erate activity level taking the complexity of the disease and treatment into
account [28]. In laboratory-based assessments, subjects are aware of the test
situation and usually try to demonstrate their best locomotion performance.
However, activity in daily life underlies many influences, such as job-related
activity, leisure-time activities, transportation as well as seasonal variations.
Miniature devices allow for an easy and comfortable assessment of these vari-
ations. In order to investigate the potential seasonal influence, 13 soldiers of
the German Armed Forces were measured with the SAM throughout a year.
The SAM was returned by standard mail once per month for downloading
the data. The mean gait cycles per day were computed for each month and
each soldier to gain insight in seasonal variation of daily activity. The results
suggest that daily activity is lower during winter and increases during summer
(Figure 16.9). Thus, it could be useful to add a correction factor to activity
values obtained in summer or winter.

A possibility to get a more detailed analysis of subjects could be the mon-
itoring of subjects hips by accelerometry with a miniature device attached
to the back of the subject. Quite recently, a inverted pendulum model was
tested for adults and children under controlled conditions [29, 30]. The accu-
racy of the method in detecting left and right steps, walking distance and
speed under controlled conditions was shown to be 99%. The method was
further compared to a manual step counter and global positioning system
(GPS) in two walks of a 400 m track with normal (1.5 m/s) and fast (1.9
m/s) gait velocity and a 412 m circuit in the streets with normal velocity
(1.5 m/s). For normal velocity, the results of step detection were around 99%,
for walking distance and velocity around 95%. For the track with fast speed,
the accuracy dropped to 95–90%. However, the method offer great potential

Fig. 16.9. Mean gait cycles/day for all soldiers from May 2005 to March 2006 and
mean value for the whole year (blue line, 6,970 gait cycles per day).
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to measure subjects activity in daily life after having computed a velocity-
sensitive correction factor. Furthermore, a detailed analysis of each gait cycle
could add useful information about the variety of gait parameters subjects use
in daily life. Finally, it should be mentioned that there are systems available,
which are more interested in physiologic parameters. Some of these devices
try to determine the energy expenditure from the raw accelerometer signals
or from additional skin temperature and impedance or heart rate recordings
with appropriate software algorithms.

16.7 Summary and Outlook

While the illustrated activity monitors provide a more or less detailed feedback
about the quantity of physical activity in daily life they do not help to deter-
mine the reasons for limitations in the individual’s mobility. Therefore, the
two approaches are complementary because one adds to the other the missing
piece of information, i.e., they should be considered as the two different faces
of the same coin. With the most recent developments in marker-less motion
analyses the link between the two approaches could eventually be added. If the
technical problems are solved, marker-less motion analysis might become more
widely available because less sophisticated hardware may be used. Further-
more, the systems might be more easily applicable in different environments
so that they are less confined to laboratory settings. A future application of
these emerging systems might be imaginable in that they can be set-up in the
natural environments of patients under observation so that they could allow
3-dimensional movement analysis in daily-life settings.
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Summary. This chapter demonstrates the use of computational methods for ana-
lyzing human motion to optimize human movements. Motion analysis, inverse dy-
namics as well as musculoskeletal simulation models are applied to the handcycle,
a sport equipment for disabled persons. The optimization problem is hereby to
find a arm trajectory that is better adopted to the biomechanical preconditions
of the hand–arm–shoulder system, so that propelling is more efficient with respect
to metabolic energy consumption of the muscles. The used methods, their results,
benefits and limitations are discussed.

17.1 Introduction

Inverse dynamics computation of constraint forces and resultant muscle
torques in dynamic movements is a common method to analyze human motion
in biomechanics [31] and ergonomics [24]. Visualization of calculated kine-
matics and kinetics and their presentation by means of three-dimensional
human avatars are commonly used. However, the constraint forces and resul-
tant muscle torques obtained from inverse dynamics do not include muscles’
physiological properties. This firstly leads to the problem that muscular load
is underestimated when the movements include muscular cocontraction [12].
Secondly, important parameters such as metabolic energy consumption [1]
or the feeling of discomfort [36] cannot be calculated without determining
muscular forces.

Muscular properties such as the force–length and the force–velocity rela-
tions [18] have been the subject of detailed measurements in clinical diagnos-
tics and competitive sports. Recently, the knowledge about internal muscle
properties has been increased by the application of in vivo ultrasound and
MRI techniques [22, 23], and valid parameters are now available, leading to
realistic agreement of model calculations and measured quantities such as
muscle surface electromyography and joint angles [3] as well as in vivo mea-
sured tendon strain [34]. The improved knowledge of muscular parameters
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Fig. 17.1. Inverse and direct dynamic approach explained as by the basic Newton
equation formulated for a rigid body.

increased the confidence in musculoskeletal models in order to obtain insight
into human motion on a muscular level instead of a purely mechanical level
of resultant muscle joint torques [31].

There are currently two methods used to calculate muscular forces: static
and dynamic optimization, which use a mechanical inverse or direct dynamic
approach respectively. Both inverse and direct dynamic method can best be
described by the basic Newton equation for a rigid body (see Figure 17.1):
having captured the motion trajectory of the body segment i, e.g., upper arm,
as depicted left in Figure 17.1, the acceleration of the upper arm can be com-
puted. Knowing the mass of the upper arm, the right side of the equation
contains all external forces on the segment. In case of the upper arm these
forces are gravity and the shoulder and elbow joint forces. When using the
forward dynamic approach, virtual equipment is tested by applying internal
muscle forces to the bones and synthesizing the motion trajectory of the up-
per arm.

Static optimization has been used extensively for the purpose of estimating
in vivo muscle forces [5, 10, 14]. Static models are computationally efficient,
allowing full three-dimensional motion and generally incorporate many mus-
cles, e.g., 30 or more muscles per leg. However, static optimization has been
criticized on several points. Firstly, the validity of inverse dynamics is inti-
mately related to the accurate collection and processing of body segmental
kinematics [11]. Secondly, the fact that static optimization is independent of
time makes it relatively difficult to properly incorporate muscle physiology.
Finally, analysis based on an inverse dynamics approach may not be appro-
priate for explaining muscle coordination principles [21,37].

Dynamic optimization is not subject to these limitations and can provide
more realistic estimates of muscle force [1,3]. Dynamic optimization integrates
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system dynamics into the solution process. Quantities like muscle forces and
the criterion of performance are treated as time-dependent state variables,
whose behavior is governed by sets of the following differential equation.

d

dt
(
∂L

∂ẋi
) − ∂L

∂xi
= FL

xi
+ FM

xi
(17.1)

L is the lagrangian (kinetic minus potential energy) of a planar rigid multibody
system connected by n revolute joints with joint angles x1..xn representing the
degrees of freedom of the system. FL

xi
and FM

xi
are the passive (ligaments and

cartilage) and muscular torques across the respective joint [17]. Ideally, the
differential equations accurately represent the system’s underlying physiolog-
ical properties. The time histories of predicted muscle forces are thus consis-
tent with those forces that could naturally arise during movement. Dynamic
optimization (forward dynamic approach) unfortunately requires the integra-
tion of the equations of motion (Equation 17.1) and muscles’ state variables.
Consequently a much higher computational expense is the drawback of more
detailed modelling.

The aim of this study is firstly to show how muscular properties can be
measured and used in order to understand and evaluate human motion and
secondly to demonstrate the use of a direct dynamical model for the optimiza-
tion of sports equipment.

The methods described above will be illustrated by the specific example
of handbiking (handcycling). Handbiking has become very popular among
disabled athletes and was declared as Paralympic discipline in 2004. As the
history of the sport is still very young not many developments have taken
place. The drive train in particular has been adopted from conventional bi-
cycles and might not perfectly fit to the upper body’s anthropometry. This
study compares the circular handbike to a linear rowing movement and de-
rives a new idea of a driving concept from measured muscular properties. This
new idea is virtual and therefore a good application for the forward dynamic
computer model previously described. The effect of both drive concepts, the
conventional circular and the new concept, on metabolic energy consumption
were investigated.

17.2 Methods

In this study the following approach was chosen for the purpose of evaluating
and optimizing the handbike’s propelling movement with respect to increased
power output and minimized energy consumption:

1. Collect data of muscular force production ability during the movement
(statically and/or dynamically) in Section 17.2.1.

2. Gain knowledge about handbiking and related movements (e.g., rowing,
no legs only arms) by means of motion analysis and inverse dynamics in
Section 17.2.2.
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3. Derive an alternative, improved motion from the preliminary considera-
tions in Sections 17.3 and 17.4.

4. Examine the handbike and the virtual alternative of an elliptical motion by
means of a musculoskeletal model and forward dynamics in Section 17.2.3.

17.2.1 Measurement of Muscular Properties

The ability of muscle torque production under static conditions was measured
over the complete range of motion [36]. Figure 17.2 displays the setup to
measure isometric joint torques of the elbow joint. A similar setup is used to
determine muscles torque production of the shoulder joint.
The torques from the force the test person applied to the handle, are measured
with strain gauges. The force can be calculated on the basis of the arm of
the lever from the hand to the hand grip and from the grip to the torque
transducer. The moment generated by the grip is neglected. The force must be
perpendicular to the joint distal segment, e.g., forearm, and the body segment
must be in line with the lever of the transducer. This can be achieved by
moving the device in all directions of rotating as well as up and down. A test
series undertaken with n = 7 male subjects, age between 20–26 years, 175–183
cm height and 73–82 kg weight was performed. Different angular positions
of the joints in steps of 45 degree and all possible force directions of the
shoulder (flexion-extension, abduction-adduction, internal-outward-rotation)
and elbow joint (flexion-extension, supination-pronation) have been measured.
To avoid muscle fatigue caused by a large number of measurements (three force
directions in every angular position) step size of the angular joint positions
was limited to 45 degree. The participants had to generate maximum joint
torque (in every angular position and force direction), and hold it for 5 seconds
with visual feedback.

Fig. 17.2. Device to measure isometric joint torques of the elbow joint. The moment
is calculated with the formula Mjoint = Fjointbjoint.
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17.2.2 Motion Analysis and Inverse Dynamics

Inverse dynamics computation of internal joint forces and torques requires
the input of acceleration of the body segments (Figure 17.1), obtained by dif-
ferentiating motion trajectories. Three different motion capture systems were
compared due to their applicability in handbiking: markerless (PCMAN [27],
comparable to 12), markerbased with video data and motion analysis software
package (SIMI Reality Motion Systems GmbH, Unterschleissheim, Germany)
and markerbased infrared filtered image (Vicon, Oxford, UK). All three sys-
tems are shown in Figure 17.3. The markerless method was designed for the
use of two cameras, which requires manual readjusting of the tracked body
segments. To make it run reliably and with high accuracy in the lab, more than
eight cameras 15 and an additional laser body scan of the subjects to match
the different movement postures would be required. Moreover the predefined
definition of the coordinate systems were not in agreement with the conven-
tions of biomechanics which are based on well-defined anatomical landmarks
on the body [20]. This problem was solved using a marker-based system with a
semi manual tracking of reflecting markers (SIMI) in three video images from
different perspectives. This system lead to very time-consuming handling of
video sequences and manual correction of the tracking. The infrared system
(Vicon) preprocesses the infrared image in the camera, so that only coordi-
nates of the bright marker points are captured. The user finally obtains 3D
coordinates of the markers position. This system reliably tracks the mark-
ers completely automatically, so that no manual postprocessing is required.
The accuracy of tracking the center of a 9 mm diameter marker within a fo-
cal volume of 6 cubic meters was less then 0.1 mm. Although the system is
very accurate, information about skeletal shoulder and elbow kinematics is
limited, particularly about abduction and adduction or internal and external
rotation: there is soft tissue between the reflective markers and the bones,
which allows for the markers to move in relation to the underlying bones dur-
ing movement [30]. Based on rigid body mechanics, three-dimensional analysis

Fig. 17.3. Different motion analysis systems: marker-less semiautomatic detection
systems (PCMAN [27], left), marker-based semiautomatic tracking with high speed
cameras and Simi-Motion (middle) and marker-based automatic tracking systems
(Vicon, right).
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assumes that markers placed on the body represent the positions of anatomical
landmarks for the segment in question [20].

One way to avoid the inaccuracy of surface markers is to use invasive mark-
ers and thereby directly measure skeletal motion. This provides the most accu-
rate means for determining bone movements [6]. Nigg [25] reported differences
of up to 50% for similar knee angles when comparing knee joint kinematics us-
ing external and bone fixed markers. It appears that skin movement artifacts
present the most problematic source of error.

Invasive methods are excluded in our study, but the noninvasive marker-
based approach can be improved by employing Soederkvist and Wedin’s trans-
formation matrices [32]. In this method more than the required three markers
are attached to one segment to calculate segments transformation vector (d)
and rotation matrix (R) from markers position xi to markers position yi in
the next timestep. Because of measurement errors the mapping from points
xi to yi is not exact, the following least squares problem is used to determine
R and d.

min

n∑
i=1

‖Rxi + d− yi‖2

defining matrix A and B as follows

x =
1
n

n∑
i=1

xi

y =
1
n

n∑
i=1

yi

A = [x1 − x, ..., xn − x]
B = [y1 − y, ..., yn − y]

Singular value decomposition [2] of the matrix C = BAT can be used to
compute the solution to described in the following algorithm.

PΓQT = C

R = Pdiag(1, 1, det(PQT ))QT

d = y −Rx

In this study, elbow and shoulder joint motions are calculated by means of
joint coordinate systems (JCS), which are based on anatomical landmarks
according to the standard of the International Society of Biomechanics (ISB)
[20]. The zero angle configuration of all JCS are calculated from a standing
trial as shown in Figure 17.4. The cardan angles are calculated according
to the conventions of Grood and Suntay [15], where the first angle is the
rotation around one axis defined in the distal segment JCS. The third angle
is a rotation around one axis of the proximal JCS. The second rotation axis
cannot be freely chosen. It is perpendicular to the first and the third axis.
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Fig. 17.4. Definition of the joint coordinate system according to ISB [20] from
standing trial. Cardan angles are calculated according to Grood and Suntay [15].

Compared to standard cardan rotations this system has the advantage that
it can be interpreted clinically. In case of the elbow joint for instance the
distal body axis defined with respect to the forearm is selected as the forearm
supination-pronation axis (X), in direction from the wrist to the elbow joint
centers. The third axis is the elbow flexion-extension axis (Z), which is defined
in the upper arm segment from the lateral to the medial epicondylus (see
Figure 17.4). The second rotation axis (floating axis, Y) cannot be freely
chosen. It is perpendicular to the first and the third axis.

In all approaches, markerless or markerbased, invasive or noninvasive, kine-
matic crosstalk caused by variability in the experimental determination of the
joint axis, e.g., knee joint flexion axis, was shown to be of sufficient magnitude
to affect the measurement of joint rotation [28]. Therefore absolute values of
segment rotation must be taken with precaution. However, regarding a com-
parison based on one subject using different types of propelling systems, as it
is the case in this study, the error is the same for all systems, since the same
anatomical markers were used to determine the joint axis.

The calculated joint angles described above are then used as an input for
the Newton Euler equations (see Figure 17.1) to calculate inverse dynamically
joint reaction forces and torques and the resultant muscle joint torques. The
resultant muscle joint torques are equivalent to the net-muscle joint torques
calculated by means of the musculoskeletal model (see Section 17.2.3). It
should be noted that inverse computation necessitates the joint velocity and
joint acceleration, which are calculated numerically from the joint angles. This
generally leads to very rough and unrealistic reaction forces and joint torques.
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A marker-driven human model [35] filters motion data according to the rigid
body dynamical model. As a result appropriate joint angle functions can be
obtained.

This study uses motion capture of handbiking and rowing by means of
markerbased tracking systems (SIMI as well as Vicon) and inverse dynam-
ics calculation applying the model described in [35]. Following protocol was
carried out on two subjects (male, 32 and 36 years, 175 and 180 cm, 72 and
78 kg): rowing and handcycling for one minute at a cadence of 66 cycles/min
and 100 Watt resistance. In case of the comparison between handcycling and
rowing, only pulling, i.e., no pushing forces where applied.

17.2.3 Musculoskeletal Model

To simulate a new non existing elliptical handbike drive by means of forward
dynamics, a musculoskeletal model has to be implemented, in which the mus-
cles generate the forces to drive the skeletal parts of the model. Segment mass,
inertia and joint positions of the rigid skeletal bodies (hand, forearm, upper
arm and upper part of the body) are adopted from the Hanavan model [16].
Segment lengths representing individual subjects are determined by using
the Vitus 3D body scanner (Tecmat GmbH, Kaiserslautern, Germany). The
interface of hand and crank is modeled with constraint forces, to vary be-
tween circular and elliptical crank motion the elliptical half axes a and b (see
Figure 17.5) are varied. A total of six muscles transfer forces to the skeleton.
The muscles were selected with respect to their importance regarding the in-
vestigated motion and their functionality (flexor-extensor, wrapping around
one or two joints): m. brachialis, m. triceps brachii caput laterale, m. pectoralis

Fig. 17.5. Musculoskeletal model used to simulate handbiking. The human skeleton
is modelled as a planar four-segment system linked with frictionless revolute joints at
the shoulder and elbow. A total of six muscle groups transfer forces to the skeleton.
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major, m. deltoideus pars spinalis, m. biceps brachii caput longum and m. tri-
ceps brachii caput longum. The Hill-type muscle model [19], which contains
a contractile element (CE) and passive elastic element (PEE) in series with
an elastic element (SEE), is applied for the calculation of the muscles’ forces
(see Figure 17.6). The passive SEE transmits the forces from the muscle CE
and PEE to the bones. The force in the contractile element of each muscle de-
pends on the muscle’s length, velocity and activation [3,33]. The calculation of
the muscle’s length from origin to insertion is based on experimentally deter-
mined length functions over the joint angle [29]. Muscle activation is defined
by a set of control nodes interpolated with sinusoidal functions as depicted in
Figure 17.7. The nodes were varied in time and amplitude to make the model
drive the handbike. An optimization procedure (Figure 17.8) for the control
nodes parameters is used, minimizing the cost function of metabolic energy
of all n muscles.

min

n∑
i=1

Ei(lCE , l̇CE , FCE , t)

Metabolic energy is calculated

Ei = Hi + Wi

W is the mechanical work W = FCElCE and H is the energy required for the
contractile process, mostly dissipated as heat. Detailed parameters of calculat-
ing H can be found in [1]. The global optimization was performed applying the

Fig. 17.6. Ultrasound picture of calf muscle and mechanical representation below.
One fiber bundle marked in white is associated with the force-producing contractile
element (CE). This fiber bundle is attached to the aponeurosis, the white structure
surrounding the muscle fibers. When the fiber contract, it pulls at the aponeurosis
which transfers the force via the tendon to the bones. The aponeuroses and tendons
are associated with the series elastic element SEE.
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Fig. 17.7. Activation function with 8 control nodes used for m. brachialis. The
control nodes can vary in time and amplitude during the optimization process. The
upper and lower boundaries are used to reduce optimization time.
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Fig. 17.8. Optimization process to determine muscular activation.
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method of simulated annealing [7,13]. The equations of motion were solved and
integrated, using the multibody software SIMPACK (Intec GmbH, Wessling,
Germany).

17.3 Results

17.3.1 Kinematics of Rowing and Cycling
with Respect to the Muscles’ Torque Production Ability

The maximum isometric (static) joint torques of 7 subjects as measured with
the setup described in Section 17.2.1 are shown in Figure 17.9. The joint
torques were normalized and then averaged over the 7 subjects measured.

Fig. 17.9. Normalized maximum isometric joint torques of the elbow (top) and
shoulder joint (bottom). Dots represent measured data, the surface in-between is
interpolated.
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In the case of the elbow joint, the flexion-extension angle as well as the
supination-pronation angle of the forearm is shown, whereas for the shoul-
der joint the flexion-extension and abduction-adduction angles are plotted.
The inward-outward rotation of the shoulder lies in the fourth dimension and
is not displayed here. The joint torques in Figure 17.9 are lower than one,
since not all athletes reached their maximum torque at the same joint posi-
tions. Figure 17.10 shows a typical example of joint angles derived from motion
analysis during one handbike cycle, executed by one subject. The local JCS
axis and rotation order are chosen according to Grood and Suntay [15]: the
rotation around the z-axis of the proximal body (upper arm) corresponds to
flexion and extension of the elbow joint, while the rotation around the y-axis
of the distal body (forearm) corresponds to the supination and pronation of
the forearm. The “floating axis” (x-axis) is perpendicular to the y- and z-axes
and has no anatomical equivalence. The orientation of the axes is shown in
Figure 17.4.

These measurements results (maximum isometric joint torque and motion
analysis) were used to evaluate the force generation ability of different joint
angle trajectories (handcycling and rowing) at the shoulder and elbow joints.
This is shown in Figure 17.11 for the handcycle motion and the shoulder joint.
This evaluation leads to the conclusion that the muscles’ torque potential at
the elbow joint is up to 20 percent higher during rowing than during hand-
cycling (see Figure 17.12). This is mainly caused by a higher extend of elbow
flexion. Concerning the shoulder joint the muscles’ torque potential is the
same for both motions.

Fig. 17.10. Joint angles during one handbike-cycle for the elbow joint.
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Fig. 17.11. Maximum isometric joint torques at shoulder joint plotted together
with the joint angles trajectory of handbiking.

Fig. 17.12. Elbow torque potential of two test persons: in rowing the muscles’
torque potential at the elbow joint is up to 20% higher than during handcycling.
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Fig. 17.13. Stress (total force) in elbow and shoulder joint during rowing and
handbiking. Elbow joint: rowing: Fmax = 720.5N at flexion angle of 127.4 deg;
handbiking: Fmax = 585.2N at flexion angle of 111.3 deg. Shoulder joint: rowing:
Fmax = 269.2N at flexion angle of 4.4 deg, abduction angle of 17.1 deg and rotation
angle of 14.7 deg. handbiking: Fmax = 617.3N at flexion angle of 20.6 deg, abduction
angle of 9.8 deg and rotation angle of 6.9 deg.

17.3.2 Inverse Dynamics

The forces acting in the elbow and shoulder joint during handbiking and
rowing were calculated inverse dynamically as described in Section 17.2.2.
The results obtained by motion capturing described in 17.3.1 were used as
input for the calculation. The joint forces are determined as the sum of all
constraint forces and the force acting around the respective joint, which can
be estimated from the muscle joint torques assuming a moment-arm for the
ellbow and shoulder of 3.5 and 5.0 cm respectively. Figure 17.13 shows the
maximum joint force occuring during the pulling phase of both movements.
The maximum force that occurs in the elbow joint during rowing is 135.3 N
higher than during handbiking. The maximum force in the shoulder joint is
348.1 N higher during handbiking than during rowing.

17.3.3 Musculoskeletal Model

To test the validity of the model calculations, a conventional circular mo-
tion was compared to measurements performed on two subjects as described
in Section 17.3.1. The model kinematics and kinetics show close correspon-
dence with the experimental data [4]. The model is therefore valid to compare
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Fig. 17.14. Metabolic energy consumption calculated during one cycle.

metabolic energy in different situations. When handcycling at 100 Watt with
a cadence of 66 rpm, the circular drive system requires 3.5% more energy
than the elliptic drive system. The progression of calculated metabolic en-
ergy consumption is shown in Figure 17.14. A similar result of 3.8% is also
obtained for the second subject simulated, having slightly different anthropo-
metric parameters.

17.4 Discussion

The result of the comparison between rowing and handcycling with respect to
the muscles’ torque production ability (see Section 17.3.1) shows that a linear
rowing movement (only arms, no legs) has a higher potential to produce forces
than the circular handbike movement. This is caused by a higher extent of
elbow flexion. The isometric (static) force is not only responsible for high
force production but also more efficient with regards to the muscle energy
consumption, i.e., the muscle needs less activation energy to produce the same
force in a more suitable joint position (better muscle force–length relation).
Limitations of these considerations are that the measured joint torques treat
the joints independently. Furthermore the muscle force–velocity relation is not
taken into account.

The load (maximum force) in the elbow joint is 135.3 N higher during row-
ing than during handbiking, while the load in the shoulder joint is 348.1 N
higher during handbiking than during rowing (see Section 17.3.2). The circular
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handbike propulsion is more complex than the linear rowing movement con-
cerning the shoulder and muscle system. This results in a higher shoulder
joint force. The linear rowing movement allows for a more effective direction
of pulling. Therefore higher forces can be applied by the participating mus-
cles (m. biceps brachii, m. brachialis etc.), which results in higher elbow joint
torques. Concerning the task of developing a new drive train for handbikes,
this comparison implicates that there is nothing to be said against using a
rowing-like motion (only arms) for propulsion: given the high shoulder stress
of wheelchair users caused by their everyday activities, it is important that
an alternative movement would especially avoid a capacity overload of the
shoulder.

The forward dynamical model suggests that the cyclic drive concept is less
efficient than the elliptical one. The difference in between circular and ellip-
tic motion of 3.5% and 3.8% on the two simulated subjects is rather small
and therefore only relevant for high performance athletes. The next steps will
therefore be to optimize elliptic drive parameters for the individual anthro-
pometrical parameters of the subjects in order to obtain a greater difference
relevant for practical use in recreational handbiking.

The forward dynamical model successfully synthesizes movements based
on a physiological muscle model and a performance criterion of metabolic en-
ergy consumption. However, the range of motion in handbiking is restricted by
the specific sports equipment. When applying this method to other movements
such as walking or entering a car, the cost function might include metabolic
energy consumption and additional terms like stability and comfort. This will
require multi-objective optimization solved in a paretho sense [26].
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Summary. We propose a model for learning the articulated motion of human arm
and hand grasping. The goal is to generate plausible trajectories of joints that
mimic the human movement using deformation information. The trajectories are
then mapped to a constraint space. These constraints can be the space of start and
end configuration of the human body and task-specific constraints such as avoiding
an obstacle, picking up and putting down objects. Such a model can be used to de-
velop humanoid robots that move in a human-like way in reaction to diverse changes
in their environment and as a priori model for motion tracking. The model proposed
to accomplish this uses a combination of principal component analysis (PCA) and a
special type of a topological map called the dynamic cell structure (DCS) network.
Experiments on arm and hand movements show that this model is able to success-
fully generalize movement using a few training samples for free movement, obstacle
avoidance and grasping objects. We also introduce a method to map the learned
human movement to a robot with different geometry using reinforcement learning
and show some results.

18.1 Introduction

Human motion is characterized as being smooth, efficient and adaptive to
the state of the environment. In recent years a lot of work has been done
in the fields of robotics and computer animation to capture, analyze and
synthesize this movement with different purposes [1–3]. In robotics there has
been a large body of research concerning humanoid robots. These robots are
designed to have a one to one mapping to the joints of the human body
but are still less flexible. The ultimate goal is to develop a humanoid robot
that is able to react and move in its environment like a human being. So far
the work that has been done is concerned with learning single gestures like
drumming or pole balancing which involves restricted movements primitives in
a simple environment or a preprogrammed movement sequence like a dance.
An example where more adaptivity is needed would be a humanoid tennis
robot which, given its current position and pose and the trajectory of the

435
B. Rosenhahn et al. (eds.), Human Motion – Understanding, Modelling, Capture, and

Animation, 435–452.
c© 2008 Springer.



436 S. Al-Zubi and G. Sommer

incoming ball, is able to move in a human-like way to intercept it. This idea
enables us to categorize human movement learning from simple to complex as
follows: (A) imitate a simple gesture, (B) learn a sequence of gestures to form
a more complex movement, (C) generalize movement over the range allowed
by the human body, and (D) learn different classes of movement specialized
for specific tasks (e.g., grasping, pulling, etc.).

This chapter introduces two small applications for learning movement of
type (C) and (D). The learning components of the proposed model are not
by themselves new. Our contribution is presenting a supervised learning al-
gorithm which learns to imitate human movement that is specifically more
adaptive to constraints and tasks than other models. This also has the poten-
tial to be used for motion tracking where more diverse changes in movement
occur. We will call the state of the environment and the body which affects the
movement as constraint space. Constraint space describes any environmental
conditions that affect the movement. This may be as simple as object positions
which we must reach or avoid, a target body pose or more complex attributes
such as the object’s orientation and size when grasping it. The first case we
present is generating realistic trajectories of a simple kinematic chain repre-
senting a human arm. These trajectories are adapted to a constraint space
which consists of start and end pose of the arm as shown in Figure 18.4. The
second case demonstrates how the learning algorithm can be adapted to the
specific task of avoiding an obstacle where the position of the obstacle varies.
The third case demonstrates how hand grasping can be adapted to different
object sizes and orientations.

The model accomplishes this by aligning trajectories. A trajectory is the
sequence of body poses which change in time from the start pose to the end
pose of a movement. Aligning trajectories is done by scaling and rotation
transforms in angular space which minimizes the distance between similar
poses between trajectories. After alignment we can analyze their deformation
modes which describe the principal variations of the shape of trajectories. The
constraint space is mapped to these deformation modes using a topological
map.

In addition to generating adaptive human movement, We also introduce in
this chapter a reinforcement learning algorithm which enables us to transfer
the learned human movement to a robot with a different embodiment by
using reinforcement learning. This is done by learning similar trajectories of
the human hand and the robot’s end effector. A reward function measures
this similarity as a mixture of constraint fitting in the robot’s workspace
and the similarity of the trajectory shape to the human’s. The reinforcement
learning algorithm explores trajectory space using a spectral representation of
trajectories in order to reduce the state space dimensionality. A special type
of DCS networks called QDCS is used for learning.

The Combination of adaptive movement learning and movement trans-
fer enables a complete movement learning and transfer system architecture.
This consists of two neural networks (NN) as shown in Figure 18.1. The first
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Fig. 18.1. Architecture for learning movement and transferring it to a robot.

network reconstructs human movement and the second transforms this move-
ment to the robot space using reinforcement learning.

Next, we describe an overview of the work done related to movement learn-
ing and transferring and compare them with the proposed model. After that
the adaptive movement algorithm will be presented followed by the transfer
algorithm and then experimental results.

18.1.1 State of the Art

There are two representations for movements: pose based and trajectory
based. We will describe next pose based methods.

Generative models of motion have been used in [1,2] in which a nonlinear
dimensionality reducing method called Scaled Gaussian Latent Variable Model
(SGPLVM) is used on training samples in pose space to learn a nonlinear
latent space which represents the probability distribution of each pose. Such
a likelihood function was used as a prior for tracking in [1] and finding more
natural poses for computer animation in [2] that satisfy constraints such as
that the hand has to touch some points in space. Another example of using a
generative model for tracking is [4] in which a Bayesian formulation is used to
define a probability distribution of a pose in a given time frame as a function of
the previous poses and current image measurements. This prior model acts as
a constraint which enables a robust tracking algorithm for monocular images
of a walking motion. Another approach using Bayesian priors and nonlinear
dimension reduction is used in [5] for tracking.

After reviewing pose probabilistic methods, we describe in the following
trajectory based methods. Schaal [3] has contributed to the field of learning
movement for humanoid robots. He describes complex movements as a set of
movement primitives (DMP). From these a nonlinear dynamic system of equa-
tions are defined that generate complex movement trajectories. He described a
reinforcement learning algorithm that can efficiently optimize the parameters
(weights) of DMPs to learn to imitate a human in a high dimensional space.
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He demonstrated his learning algorithm for applications like drumming and
a tennis swing.

To go beyond a gesture imitation, in [6] a model for segmenting and mor-
phing complex movement sequences was proposed. The complex movement
sequence is divided into subsequences at points where one of the joints reaches
zero velocity. Dynamic programming is used to match different subsequences
in which some of these key movement features are missing. Matched movement
segments are then combined with each other to build a morphable motion tra-
jectory by calculating spatial and temporal displacement between them. For
example, morphable movements are able to naturally represent movement
transitions between different people performing martial arts with different
styles.

Another aspect of motion adaptation and morphing with respect to con-
straints comes from computer graphics on the topic of retargeting. As an
example, Gleicher [7] proposed a nonlinear optimization method to retarget
a movement sequence from one character to another with an identical struc-
ture but different segment lengths. The problem is to satisfy both the physical
constraints and the smoothness of movement. Physical constraints are contact
with other objects like holding the box.

The closest work to the model presented in this chapter is done by Banarer
[8]. He described a method for learning movement adaptive to start and end
positions. His idea is to use a topological map called Dynamic Cell Structure
(DCS) network [9]. The DCS network learns the space of valid arm configu-
rations. The shortest path of valid configurations between the start and end
positions represents the learned movement. He demonstrated his algorithm to
learn a single gesture and also obstacle avoidance for a single fixed obstacle.

18.1.2 Contribution

The main difference between pose based methods and our approach is that
instead of learning the probability distribution in pose space, we model the
variation in trajectory space (each trajectory being a sequence of poses). This
representation enables us to generate trajectories that vary as a function of
environmental constraints and to find a more compact representation of vari-
ations than allowed by pdfs in pose space alone. Pose pdfs would model large
variations in trajectories as a widely spread distribution which makes it diffi-
cult to trace the sequence of legal poses that satisfy the constraints the human
actually makes without some external reference like motion sequence data.

Our approach models movement variation as a function of the constraint
space. However, style based inverse kinematics as in [2] selects the most likely
poses that satisfy these constraints. This works well as long as the pose con-
straints do not deviate much from the training data. This may be suitable for
animation applications but our goal here is to represent realistic trajectories
adapted to constraints without any explicit modelling. Banarer [8] uses also
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a pose based method and the model he proposed does not generalize well be-
cause as new paths are learned between new start and end positions, the DCS
network grows very quickly and cannot cope with the curse of dimensionality.
Our DCS network generalizes over trajectory space not poses enabling more
adaptivity.

Gleicher [7] defines an explicit adaptation model which is suitable to gen-
erate a visually appealing movement but requires fine tuning by the animator
because it may appear unrealistic. This is because it explicitly morphs move-
ment using a prior model rather than learning how it varies in reality as done
in [2].

In the case of Schaal [3], we see that DMPs although flexible are not
designed to handle large variations in trajectory space. This is because rein-
forcement learning adapts to a specific target human trajectory.

Morphable movements [6] define explicitly the transition function between
two or more movements without considering the constraint space. Our method
can learn the nonlinear mapping between constraint space and movements by
training from many samples. The variation of a movement class is learned and
not explicitly predefined.

To sum up, we have a trajectory-based learning model which learns the
mapping between constraints and movements. The movement can be more
adaptive and generalizable over constraint space. It learns movements from
samples and avoids explicit modelling which may generate unrealistic trajec-
tories.

18.2 Learning Model

After describing the problem, this section will develop the concept for learning
movement and then it describes how this model is implemented.

In order to develop a system which is able to generalize movement, a num-
ber of reductions have to be made to the high-dimensional space of start –
end configurations or any other envirounmental constraints. This reduction is
done in two steps. The first step is to learn the mechanics of movement itself
and the second is to learn how movement changes with start – end configura-
tion. The mechanics of movement are called intrinsic features. The changes of
intrinsic feature with respect to relative position are called extrinsic features.
The intrinsic features describe movement primitives that are characteristic for
the human being. These features are the following:

1. The acceleration and velocity of joints as they move through space. For
example a movement generally begins by a joint accelerating at the start
then decelerating as it nears its end position.

2. The nonlinear path taken by the joints to reach their destination. This
is what characterizes smooth human movement. Otherwise the movement
will look rigid similar to inverse kinematics used by robots. This non-
linearity is not only seen in simple movements like moving from point a
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to b but also it can be seen in more complex movements for which it is
necessary like obstacle avoidance and walking.

3. The coordination of joints with respect to each other in time. This means
that joints co-deform in space and time working together to achieve their
goal.

After modelling intrinsic features, extrinsic features can be characterized
as the variation of intrinsic feature in the space of all possible start and end
positions of the joints and any environmental constraints such as obstacle
positions. Extrinsic features describe:

1. The range of freedom of joints.
2. The movement changes with respect to rotation and scale. As an example,

we can consider how the movement changes when we draw the letter A in
different directions or with different sizes.

The difference between intrinsic and extrinsic features that characterizes
movement enables the formulation of a learning model. This model consists of
two parts: The first part is responsible for learning intrinsic features which uses
principal component analysis (PCA). It is applied on the aligned trajectories
of the joints to reduce the dimensionality. The second part models the extrinsic
features using a special type of an adaptive topological map called the dynamic
cell structure (DCS) network. The DCS learns the nonlinear mapping from the
extrinsic features to intrinsic features that are used to construct the correct
movement that satisfies these extrinsic features.

In the following subsections we will take a detailed look at these
mechanisms.

18.2.1 Intrinsic Features Using PCA

The algorithm which will be used to extract intrinsic features consists of the
following steps:

1. Interpolation
2. Sampling
3. Conversion to orientation angles
4. Alignment
5. Principal component analysis

The main step is alignment in which trajectories traced by joints in space
are aligned to each other to eliminate differences due to rotation and scale
exposing the mechanics of movement which can then be analyzed by PCA. In
the following paragraphs each step of the algorithm will be explained in detail
as well as the reasons behind it. As an example, we will assume throughout
this chapter that there is a kinematic chain of 2 joints: shoulder and elbow.
Each joint has 2 degrees of freedom (φ, θ) which represent the direction of the
corresponding limb in spherical coordinates.
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To perform statistical analysis, we record several samples of motion se-
quences. In each motion sequence the 3D positions of the joints are recorded
with their time. Let us define the position measurements of joints of a move-
ment sequence (k) as {(xi,j,k, yi,j,k, zi,j,k, ti,j,k)} where (x, y, z) is the 3D po-
sition of the joint, t is the time in milliseconds from the start of the motion.
The index i is the position ( frame), j specifies the marker and k specifies the
the movement sequence.

The first step is to interpolate between the points of each movement se-
quence. Usually a 2nd degree B-spline is sufficient to obtain a good interpo-
lation. We end up with a set of parametric curves {pk(t)} for each motion
sequence k where pk(t) returns the position vector of all the joints at time t.

The second step is to sample each pk(t) at equal time intervals from the
start of the sequence t = 0 to its end t = tendk

. Let n be the number of
samples then we form a vector of positions vk = [p1,k,p2,k . . .pn,k] where
pi,k = pk(( i−1

n−1 )tendk
). This regular sampling at equal time intervals enables

us to represent trajectories with a fixed length vector which facilitates statis-
tical analysis on a population of such vectors. This vector form also represents
implicitly the acceleration and velocity of these paths through variability of
distances between points. This is the reason why time was used as the variable
in the parametric curves. In cases where motion is more complex and consists
of many curves, this method automatically samples more points of high cur-
vature than points of lower curvature. This places comparable corner points
of complex paths near each other and thus does not normally necessitate more
complex registration techniques to align the curves as long as the trajectories
have up to 4–5 corners.

The third step is to convert the Euclidean coordinates vk to direction
angles in spherical coordinates Sk = [s1,k, s2,k, . . . sn,k] where si,k is the vector
of direction angles for all the joints. This means that a given joint j in a
kinematic chain with some position pj = (xj , yj , zj) is attached to its parent
with a position pj−1 = (xj−1, yj−1, zj−1) and since the distance D between
them is constant we need only to represent the direction of joint j with respect
to joint j − 1. This can be done by taking the relative coordinates Δp =
pj − pj−1 and then convert Δp to spherical coordinates (ρj , φj , θj) where
ρj = D is constant. After that, we take only the direction angles (φj , θj) as
the position of the joint. For a kinematic chain of m joints we will need m− 1
such direction angles because the first joint is the basis of the chain therefore
has no direction.

The forth step is to align the paths taken by all the joints with respect to
each other. This alignment makes paths comparable with each other in the
sense that all extrinsic features are eliminated leaving only the deformations
of the path set from the mean. In order to accomplish this, we first convert
every direction point (φj , θj) of a joint j to a 3D unit vector ûj = ai+ bj+ ck
that corresponds to the direction of the joint at some point in time. With
this representation we can imagine that a moving joint traces a path on a
unit sphere ûj(t) as the paths shown in Figure 18.2. Given a kinematic chain
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Fig. 18.2. Alignment of two trajectories by scale and rotation. The trajectories are
a sequence of direction vectors tracing curves on a unit sphere.

of m joints moving together, we can represent these moving joints as m − 1
moving unit vectors U(t) = [û1(t), . . . ûj(t), . . . ûm−1(t)]. Sk samples the path
at equal time intervals t0, . . . , tnk

that correspond to Ui = U(ti), i = 0 . . . tnk
.

This enables us to represent the path as a matrix of direction vectors W =
[U0, . . .Unk

]′. The reason why we use direction vector representation W is
because it facilitates alignment of paths with each other by minimizing their
distances over rotation and scale transforms. To accomplish this, we define a
distance measure between two paths instances W1,W2 as the mean distance
between corresponding direction vectors of both paths (i.e., corresponding
joints j at the same time ti)

pathdist(W1,W2) =
1

|W1|
∑

∀(ûi,jεW1,v̂i,jεW2)

dist(ûi,j , v̂i,j) (18.1)

where the distance between two direction vectors is simply the angle between

dist(û, v̂) = cos−1(û · v̂) (18.2)

Two transforms are used to minimize the distances between the paths:

1. Rotation (R): When we multiply each direction vector in the path with a
rotation matrix R, we can rotate the whole path as shown in Figure 18.2.

2. Scaling: We can scale the angles between path points. This assumption is
made by the observation that movements are scalable. For example, when
we draw a letter smaller and then bigger, we basically move in the same
way but with larger angles as shown in Figure 18.2. This is of course a
simplifying assumption that is not exactly true but it helps us later to
fit start-end positions of variable arc-length distances. To scale the path
we simply choose a reference direction vector on the path and then shift
each direction vector in the direction of the arc length between them by
multiplying the arc length θ with a scale factor s as depicted in Figure 18.2.

Minimizing distances can be done by simple gradient descent over the scale
parameter s and rotation angles around the three axes θx, θy, θz defining a
rotation matrix R = Rx(θx)Ry(θy)Rz(θz). When extending this algorithm to
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Fig. 18.3. Example of aligning a training set of trajectories represented as direction
vectors tracing curves on a unit sphere. Left before alignment and right after. We
see how the hand trajectories cluster together and the mean becomes smoother.

Fig. 18.4. Three movements of the arm that all begin with the same start position
(left image), the rest are end positions.

align more than two paths, we can do that by computing the mean path W and
then fitting all the sample paths {W1, . . . ,Wp} to the the mean. We repeat
this cycle until the mean path W converges. The mean path is initialized by
an arbitrary sample W = Wj . It is computed from aligned samples in each
iteration step by summing the corresponding direction vectors from all the

sample paths and then normalizing the sum W =
∑

i
Wi

|
∑

i
Wi| . An example of

aligning is in Figure 18.3.
The fifth step is to convert the aligned trajectories back to the angular

representation and form a data matrix of all p aligned motion sequences X =
[ST

1 . . .ST
k . . .ST

p ]T . Principal component analysis is applied on X yielding
latent vectors Ψ = [ψ1, ψ2, . . . , ψn]. Only the first q components are used
where q is chosen such that the components cover a large percentage of the
data Ψq = [ψ1, ψ2, . . . , ψq]. Any point in eigenspace can be then converted to
the nearest plausible data sample using the following equation

S = S + Ψqb (18.3)

where S = 1
p

∑p
k=1 Sk and b is the column vector of an eigenpoint.

The inverse transform from eigenspace to trajectories is approximated by

b = Ψ′
q(S − S) (18.4)
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Fig. 18.5. The first three variation modes of a kinematic chain representing the
shoulder, elbow and hand constructed in 3D space. The middle thick line is the
mean trajectory and the others represent ±1,±2,±3 standard deviations along each
eigenvector.

The latent coordinates b represent the linear combination of deformations
from the average paths taken by the joints. An example of that can be seen in
Figure 18.5. In this example, the thick lines represent the mean path and the
others represent ±3 standard deviations in the direction of each eigenvector
which are called modes. The first mode represents the twisting of the hand’s
path around the elbow and shoulder. The second mode shows the coordina-
tion of angles when moving the hand and elbow together. The third mode
represent the bulginess of the path taken by the hand and shoulder around
the middle. We see that these deformation modes have meaningful mechanical
interpretations.

18.2.2 Extrinsic Features Using DCS

PCA performs a linear transform (i.e., rotation and projection in (18.3)) which
maps the trajectory space into the eigenspace. The mapping between con-
straint space and eigenspace is generally nonlinear. To learn this mapping
we use a special type of self organizing maps called Dynamic Cell Structure
which is a hybrid between radial basis networks and topologically preserving
maps [9]. DCS networks have many advantages: They have a simple struc-
ture which makes it easy to interpret results, they adapt efficiently to training
data and they can cope with changing distributions. They consist of neurons
that are connected to each other locally by a graph distributed over the input
space. These neurons also have radial basis functions which are Gaussian func-
tions used to interpolate between these neighbors. The DCS network adapts
to the nonlinear distribution by growing dynamically to fit the samples until
some error measure is minimized. When a DCS network is trained, the out-
put bDCS(x) which is a point in eigenspace can be computed by summing
the activations of the best matching neuron (i.e., closest) to the input vector
x representing a point in constraint space and the local neighbors to which it
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Fig. 18.6. Distribution of eigenvalues (bright regions represent maxima) in the
angular space of the end position of the hand.

is connected by an edge which is defined by the function Ap(x). The output
is defined as

bDCS(x) = fnrbf
P (x) =

∑
i∈Ap(x) bih(‖ x − ci ‖ /σi)∑
j∈Ap(x) h(‖ x − cj ‖ /σj)

, (18.5)

where ci is the receptive center of the neuron i, bi represents a point in
eigenspace which is the output of neuron i, h is the Gaussian kernel and σi is
the width of the kernel at neuron i.

The combination of DCS to learn nonlinear mapping and PCA to reduce
dimension enables us to reconstruct trajectories from b(x) using (18.3) which
are then fitted to the constraint space by using scale and rotation transfor-
mations. For example, a constructed trajectory is fitted to a start and end
position.

When using the network to generate new motion paths, the start-end po-
sitions Θ are given to the network. It returns the deformation modes b of
the given start-end position. We must use b to reconstruct the path between
the start and positions given by Θ. This is accomplished by converting b to
angular representation S given by (18.3). S is converted to direction vector
representation W. We take the start and end positions of W and find the best
rotation and scale transform that fits it to Θ using the same method shown
in the previous section. The resulting path represents the reconstruction that
contains both intrinsic and extrinsic features from the learning model.

18.3 Learning Model for Transferring Movement
to a Robot

After building a model which can generate human movement as a function
of constraint space, we will introduce in this section a learning algorithm
to transfer this movement to the robot. The main problem here is how to
transfer human movement to a manipulator with a different geometry and
degrees of freedom. There are many solutions proposed in literature which



446 S. Al-Zubi and G. Sommer

basically fall into two categories: The first class looks only at the effects of
actions on the environment [10]. If the effects of goal sequences are the same
on the environment then the robot movement is considered equivalent to the
humans’. The other category defines some ad hoc function which measures
the similarity between the robot and human movement [6]. This function can
also be a mixture of degree of goal satisfaction and pose similarity. In this
chapter we will solve this problem by using a reinforcement learning approach
rather than explicitly defining the function. This approach will mix the two
mapping categories. Specifically, we will use similarities of trajectories between
the end effector and the hand. This simplifies the problem and enables us to
define a meaningful intuitive mapping for any manipulation task involving
manipulation of objects. The reward function r will be a weighted mixture of
similarities of trajectories and constraint satisfaction as follows

r(u,v, C) = α1f1(u,v) + α2f2(v, C) (18.6)

where u is the trajectory of the human hand, v is the trajectory of the robot
end effector. C is the constraints to be satisfied in the robots workspace. α1, α2

are wieghts, f1 measures the similarity between the shapes of trajectories and
f2 mesures constraint satisfaction in the robot space.

This approach is similar to programming by demonstration (POD) in
[11, 12] where a human teaches the robot to move in a similar way to avoid
obstacles for example. The reinforcement learning approach suffers from the
drawback that when the action space has a high dimensionality, the solution
will not converge in a reasonable time. For this reason we will use a frequency
representation of trajectories where only the first few components are used.
Specifically, we choose a discrete cosine transform representation of trajecto-
ries which uses only real numbers. A trajectory is sampled at N points in 3D
space equidistant in time pn, n = 1 . . . N . This transform is

ak = wk

N∑
n=1

pncos(
π(2n− 1)(k − 1)

2N
), k = 1, . . . , N, (18.7)

wk = {
1√
N

,k=1√
2
N ,2≤k≤N

(18.8)

The reinforcement learning represents trajectories through the parameters
ak, k = 1...m that where m is some small dimension. The robot trajectory
is reconstructed using inverse discrete cosine transform applied on a zeros
padded vector of length N : (a1,a2, . . . ,am, 0, . . . , 0). This reduces the action
space dimension enabling a fast converging solution. This is the advantage of
using a spectral representation of trajectories for reinforcement learning. The
state is represented as the vector (a1,a2, . . . ,am,C) = (Θ,C) where C is the
constraint that is satisfied by the trajectory that is reconstructed from Θ.
The action applied on some state is some small increment ΔΘ added to Θ to
get a new modified trajectory.
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Initialize the QDCS network arbitrarily.
For each constraint C do

Initialize the start state Θ
Repeat

choose an action ΔΘ, observe Θ = Θ + ΔΘ and reward r
update online QDCS(C↪Θ↪ ΔΘ) by adding:

α[r + γmaxΔΘ QDCS(C↪Θ ↪ ΔΘ ) − QDCS(C↪ Θ↪ ΔΘ)]
Θ ← Θ

Until Θ converges to a good solution

Fig. 18.7. Learning optimal trajectories using QDCS.

The reinforcement learning begins exploring the states of trajectories that
optimize the reward function by incrementally modifying the trajectory pa-
rameters for some initial constraint C0. Once the optimal trajectory is found,
new optimal trajectories for a new constraint C1 close to C0 is learned. This
will exploit the optimal trajectory learned for C0 as a prior to learn quickly
the optimal trajectory of C1. The process continues for all constraints in con-
straint space that are needed to be learned. When fully trained, we can use
the QDCS network to find the best robot trajectory that satisfies a given
constraint.

A continuous version Q-learning is used to learn the optimal trajectory. In
it we replace the discrete Q table in normal Q learning with a DCS network
that learns the Q values online as demonstrated in [9]. The QDCS network uses
online learning to update its values. The algorithm is depicted in Figure 18.7.

18.4 Experiments

In order to record arm movements, a marker-based stereo tracker was devel-
oped in which two cameras track the 3D position of three markers placed at
the shoulder, elbow and hand at a rate of 8 frames per second. This was used
to record trajectory samples. Two experiments were conducted to show two
learning cases: moving between two positions and avoiding an obstacle.

The first experiment demonstrates that our learning model reconstructs
the nonlinear trajectories in the space of start-end positions. A set of 100
measurements were made for an arm movement consisting of three joints.
The movements had the same start position but different end positions as
shown in Figure 18.4.

The first three eigenvalues have a smooth nonlinear almost unimodal dis-
tribution with respect to the start-end space as shown in Figure 18.6. The
first component explained 72% of the training samples, the second 11% and
the third 3%.

The performance of the DCS network was first tested by a k-fold cross
validation on randomized 100 samples. This was repeated for k = 10 runs.
In each run the DCS network was trained and the number of neurons varied
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between 6 and 11. The average distance between the DCS-trajectory and the
data sample was 3.9◦ and the standard deviation was 2.1◦. This shows that
the DCS network was able to generalize well using a sample size of about 100.

We can compare with Banarer [8] who fixed the DCS network with an
upper bound of 15 neurons to learn a single gesture and not many as in our
experiment. He used simulated data of 70 samples with a random noise of
up to 5◦ and the mean error was 4.3◦ compared to our result of 3.9◦ on real
data. The measurement error of the tracker is estimated to be 4.6◦ standard
deviation which accounts for the similar mean errors. This shows that our
model scales well.

Next, we demonstrate the algorithm for obstacle avoidance. In this case
100 measurements were taken for the arm movement with different obstacle
positions as shown in Figure 18.8. The black lines show the 3D trajectory of
the arm avoiding the obstacle which has a variable position determined by
the distance B. We see how the hand backs away from the obstacle and the
elbow goes down and then upward to guide the hand to its target. A is the
Euclidian distance between the start and end positions of the hand. The grey
lines represent a free path without obstacles. In this case we need to only
take the first eigenvector from PCA to capture the variation of trajectories
due to obstacle position. This deformation mode is shown in Figure 18.9 We
define the relative position of the obstacle to the movement as simply p = B

A .

Fig. 18.8. Trajectory for obstacle avoidance in 3D space.

Fig. 18.9. Variation of arm trajectory with respect to the obstacle.



18 Imitation Learning and Transferring of Human Movement 449

The DCS network learns the mapping between p and the eigenvalue with only
5 neurons. The learned movement can thus be used to avoid any obstacle
between the start and end positions regardless of orientation or movement
scale. This demonstrates how relatively easy it is to learn new specialized
movements that are adaptive to constraints.

Finally, this model was demonstrated on hand grasping. In this case 9
markers were placed on the hand to track the index and thumb fingers using
a monocular camera as in Figure 18.10. The 2D positions of the markers were
recorded at a rate of 8.5 frames per second from a camera looking over a
table. The objects to be grabbed are placed over the table and they vary by
both size and orientation. The size ranged from 4 to 12 cm and orientation
ranged from 0 to 60 degrees as depicted in Figures 18.11 and 18.12. The
tracker recorded 350 grasping samples of which 280 was used for training
the DCS and 70 for testing. The DCS learned the variation of movement
with 95 neurons and PCA reduced the dimension from 600 to just 23. The
first two modes characterize variation of scale and orientation as shown in
Figure 18.10. Figures 18.11 and 18.12 depict an example comparison between
grasping movement generated by the DCS and an actual sample. Below we

Fig. 18.10. The first two variation modes of grasping.

Fig. 18.11. Comparison between DCS and and a grasping movement for a 4 cm
object at 60◦ with respect to the hand.
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Fig. 18.12. Comparison between DCS and and a grasping movement for a 12 cm
object at 0◦.

Start Point Constraint

End Point constraint 

Hand Trajectory 

Learned Robot Trajectory 

Fig. 18.13. Learned trajectory using start and end position constraints in 2D space.

used two measures that characterize well grasping: distance between the tips
of the index finger and the thumb and the direction of the index finger’s tip
with respect the the direction of the arm. We see that the DCS and sample
profiles look very similar. In general, the model’s root mean square error for
the first measure was 18 pixels for a 800× 600 images and 8.5◦ for the second
measure. Training the DCS takes only a few seconds for all the movement
classes presented.

After presenting the experiments for movement generation, we demon-
strate some results for movement transfer. Figure 18.13 shows a 2D human
trajectory that a robot has to learn. The end markers (shown as (∗)) in the
figure are the constraints which represents the start and end position that the
robot must maintain. The discrete cosine transform uses 8 coefficients: 4 for
the x dimension and 4 for the y dimension. The algorithm was able to learn
the nearest trajectory after about 2,000 itarations. The QDCS was set to an
upper bound of 200 neurons. The algorithm selects a random action about
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10% of the time and the action of maximum Q value the rest of the time.
This shows that the algorithm is able to learn in a reasonable time a trajec-
tory because the human motion and the constraints act as strong priors to
guide the low dimensional frequency representation of trajectories. Adapting
to more constraints is left as future work.

18.5 Conclusion

We proposed a learning model for generation of realistic articulated motion.
The model characterizes deformation modes that vary according to constraint
space. A combination of DCS network to learn the nonlinear mapping and
PCA to reduce dimensionality enables us to find a representation that can
adapt to constraint space with a few samples. This trajectory-based method
is more suited for movement generation than pose based methods which are
concerned with defining priors for good fitting with image data such as track-
ing. The proposed method models variation of movement with respect to
constraints in a more clear way than the previously proposed methods. The
potential uses of our method is in developing humanoid robots that are reac-
tive to their environment and also motion tracking algorithms that use prior
knowledge of motion to make them robust. Three small applications towards
that goal were experimentally validated. We also proposed a trajectory based
method that transfers the human movement to a manipulator of a different
embodiment using reinforcement leraning. The method uses QDCS to exploit
and expore the space of trajectories that fit to constraints specified in robot
space. This represents a natural extension of the first algorithm that enables
adaptive movement that is retargetable to any robot manipulator system.
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Summary. In this chapter, we present a model-free pose estimation algorithm to
estimate the relative pose of a rigid object. In the context of human motion, a rigid
object can be either a limb, the head, or the back. In most pose estimation algo-
rithms, the object of interest covers a large image area. We focus on pose estimation
of objects covering a field of view of less than 5◦ by 5◦ using stereo vision.

With this new algorithm suitable for small objects, we investigate the effect of
the object size on the pose accuracy. In addition, we introduce an object tracking
technique that is insensitive to partial occlusion. We are particularly interested in
human motion in this context focusing on crash test dummies.

The main application for this method is the analysis of crash video sequences.
For a human motion capture system, a connection of the various limbs can be done
in an additional step. The ultimate goal is to fully obtain the motion of crash test
dummies in a vehicle crash. This would give information on which body part is
exposed to what kind of forces and rotational forces could be determined as well.
Knowing all this, car manufacturers can optimize the passive safety components to
reduce forces on the dummy and ultimately on the real vehicle passengers. Since
camera images for crash videos contain the whole crash vehicle, the size of the crash
test dummies is relatively small in our experiments.

For these experiments, mostly high-speed cameras with high resolution are used.
However, the method described here easily extends to real-time robotics applications
with smaller VGA-size images, where relative pose estimation is needed, e.g., for
manipulator control.

19.1 Introduction

Pose estimation is a problem that has undergone much research in Computer
Vision. Most pose estimation algorithms rely on models of the observed object
(see, e.g. [1]). For a simple motion capture system it would be nice if a model
would not be needed to simplify the handling. We perform model-free pose
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estimation, i.e., pose estimation with respect to a reference pose, which is the
initial pose in our context. So we obtain a relative pose estimate.

We are particularly interested in human motion here with a focus on crash
test dummy motion. The motions occurring in vehicle crashes are very differ-
ent from the typical biomechanical motion models since the occurring accel-
erations can go beyond 1,000 m/s2. Hence, we do not use any biomechanical
motion model. An excellent review on human motion can be found in [2].

The main application for us is the analysis of stereo crash video sequences.
Crash test video analysis is a mature technique that uses photogrammetric
markers. For optimizing passive safety components in a vehicle, obtaining the
full motion of crash test dummies in crashes is of great interest. The sparse
measurements performed with photogrammetric markers are not sufficient to
obtain all rotational motion parameters. With a stereoscopic sensor setup, it
is possible to obtain dense 3D information of the crash scene independent of
photogrammetric markers, which are the only source of 3D information in
standard crash analysis. In addition, using pose estimation, rotations of rigid
parts in the scene can be measured. So for the first time, the maximal torsion
of dummy body parts can be obtained. The ultimate goal is to measure all
forces exerted on the crash test dummy during a crash. Besides supporting car
manufacturers in design of passive safety components, dummy manufacturers
can also use this data to put more biological plausibility into their dummies.

A problem closely related to pose estimation is ego-motion estimation. The
algorithm proposed here was initially developed for ego-motion estimation by
computing the optimal rotation and translation between the tracked static
points of multiple frames [3].

The remainder of this chapter is organized as follows: In Section 19.2 we
present a short overview of pose estimation using stereo vision. The proposed
algorithm is detailed in Section 19.3. Adaptions and input to the algorithm are
elaborated in Section 19.4. Simulation results as well as experimental results
on real crash image sequences are presented in Section 19.5. In the last section
we summarize the chapter.

19.2 Related Work

Pose estimation is a central problem in photogrammetry and Computer Vi-
sion. The term is used in several related meanings covering calibration, ego-
motion, and object pose estimation. We focus on pose estimation of rigid
objects viewed from a static, calibrated stereo camera setup.

There exists a vast literature on pose estimation as can be seen from this
book. For a survey that also lists a large number of 3D approaches consult [4].
In this brief literature overview, we limit ourselves to work on pose estimation
via stereo vision.
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• Grest et al. estimate human poses from stereo images [5]. Here, based on
the stereo depth data, human body models are matched. The stereo data
itself is only used for segmentation in order to separate the background
from the human body which is in the foreground.

• For face tracking, the head pose is estimated using stereo information
combined with head models [6]. Again, stereo only aids segmentation.

• Plankers and Fua use stereo and silhouettes to obtain a pose estimate [7].
The stereo data is fitted to the model using a least squares technique.
Body model and motion parameters can be estimated from such a stereo
sequence, which is computationally expensive.

In above approaches, the object of interest covers a large percentage of the
image. Investigations on pose estimation of objects covering only a small field
of view are rare in the literature.

Besides utilizing stereo vision to obtain 3D information, many other ap-
proaches exist to recover the third dimension for pose estimation. Some other
features typically used for pose estimation are:

• Silhouettes: Most pose estimation algorithm perform a 3D evaluation
of the image, often using several views of the same scene. In [1], the 3D
data is obtained by implicitly triangulating multiple views. So, 3D data
is obtained in the same step as the pose estimate. Often, silhouettes and
edges are used as the main cue to determine pose [8]. Using silhouettes
seen from multiple view points, a voxel representation can be obtained [9].

• Grayscale values: In [10], the multiple view pose estimation is directly
performed on the image grayscale data formulating a large optimization
problem on GraphCut basis. The approach is called PoseCut and it pro-
duces nice results with large computational effort.

• Optical flow: A model-based pose estimation algorithm exploiting optical
flow information is presented in [11]. Besides optical flow, also contours are
used as a complementary piece of information.

In our approach, we first obtain 3D with standard stereo correspondences
and perform pose estimation afterwards. For pose estimation we use solely
our 3D points and their tracking information, independent of the image gray
values.

Ego-motion and pose estimation are related problems and can be solved
using the same mathematical framework (see, e.g. [12]). For an overview of
robotic camera pose estimation techniques refer to [13]. We adopt an ego-
motion estimation technique for use in pose estimation.

In the next section we present a review of the ego-motion algorithm, first
described in [14] and applied to moving object detection in [3]. This chapter
is an extended version of a previously published paper [15].
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19.3 Robust Ego-motion Estimation

Computing ego-motion from an image sequence means obtaining the change
of position and orientation of the observer with respect to a static scene, i.e.,
the motion is relative to an environment which is considered static. In most
approaches this fact is exploited and ego-motion is computed as the inverse of
the scene motion [14,16–18]. In the latter a robust approach for the accurate
estimation of the six d.o.f. of motion (three components for translation and
three for rotation) in traffic situations is presented. In this approach, stereo is
computed at different times and clouds of 3D points are obtained. The optical
flow establishes the point-to-point correspondence in time starting with an
integer grid position. When reusing the ending position of such a flow for
the next correspondence search, we obtain a track, i.e., correspondences over
multiple frames. The motion of the camera is computed with a least-squares
approach finding the optimal rotation and translation between the clouds. In
the next subsections we review the main steps of this approach.

19.3.1 Overview of the Approach

Figure 19.1 shows a block diagram of the method. The inputs are given by
the left and right images from a stereo imaging system. We assume that the
calibration parameters are known and that the provided images are rectified.
Optical flow is computed using the current and previous left image. Disparities
between the left and right image are only computed for those image positions
where the flow algorithm was successful. Triangulation is performed and a list
with the tracked points for the current frame is generated. The list is added to

Fig. 19.1. General overview of the approach.
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a table where the last m lists of tracked 3D points are stored. This will allow
the integration of a multi-frame motion estimation, i.e., motion is not only
obtained based on the last observed movement, but also between m frames in
the past and the current frame. The six motion parameters (three components
for translation and three for rotation) are then computed as the optimal trans-
lation and rotation found between the current and previous list of 3D points
using a least squares closed-form solution based on rotation quaternions as
shown in the next section. In order to avoid the introduction of erroneous
data in the least square computation, a smoothness motion constraint is ap-
plied, rejecting all pairs of points which represent an incoherent movement
with respect to the current ego-motion (Section 19.3.4). These two steps are
repeated but using the list of tracked points between the current frame and
m frames in the past. The two motion hypotheses are then interpolated ob-
taining our final ego-motion estimation, and updating the list of motion steps
(Section 19.3.5). The whole process is then repeated for every new input data
stream.

In our context, tracking a point means associating an image point from
the previous frame to the current frame. A track is the connections of such
associations over multiple frames. Clearly, these track positions are noninte-
gral image positions in general. The flow and stereo algorithms to be used are
not constraint to a specific implementation. In fact, our approach was tested
with different algorithms obtaining almost identical results. The methods we
use are described in Section 19.4.

19.3.2 Obtaining the Absolute Orientation Between Two Frames

Let X = {#xi : 1 ≤ i ≤ n} be the set of 3D points of the previous frame and
P = {#pi} the set of 3D points observed at the current frame, where #xi ↔ #pi,
i.e., #pi is the version at time tk, transformed from the point #xi at time tk−1

(k frame index). In order to obtain the motion of the camera between the
current and the previous frame we minimize a function which is expressed as
the sum of the weighted residual errors between the rotated and translated
data set X with the data set P , i.e.,

n∑
i=1

wi‖#pi −Rk#xi − #dk‖2 (19.1)

where n is the amount of points in the sets, Rk is a rotation matrix, #dk is
a translation vector, and wi are individual weights representing the expected
error in the measurement of the points. This formulation requires a one-to-
one mapping of xi and pi, which is obtained by the Kanade/Lukas/Tomasi
(KLT) tracker. Typically, we track about 1,000 points for an accurate ori-
entation determination. Below n = 30, the result becomes error-prone. To
solve this least-squares problem we use the method presented by Horn [19],
which provides a closed form solution using unit quaternions. In this method
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the optimal rotation quaternion is obtained as the eigenvector corresponding
to the largest positive eigenvalue of a 4 × 4 matrix. The quaternion is then
converted to the rotation matrix. The translation is computed as the differ-
ence of the centroid of data set P and the rotated centroid of data set X.
The computation of the optimal rotation and translation is not constrained
to this specific method. Lorusso et al. [20] shortly describe and compare this
method and three more methods for solving the absolute orientation problem
in closed form.

19.3.3 Motion over Several Frames

In order to simplify the notation of the following subsections, we represent
the motion in homogeneous coordinates. The computed motion of the camera
between two consecutive frames, i.e., from frame k−1 to frame k, is represented
by the matrix M ′

k where:

M ′
k =
[
Rk

#dk

0 1

]
(19.2)

The rotation matrix R̂k and translation vector #̂
dk, i.e., the object pose are

obtained by just inverting M ′
k, i.e.,

M
′−1
k =

[
R̂k

#̂
dk

0 1

]
=
[
R−1

k −R−1
k

#dk

0 1

]
(19.3)

The total motion of the camera since initialization can be obtained as the
products of the individual motion matrices:

Mk =
k∏

i=1

M ′
i (19.4)

A sub-chain of movements from time tn to time tm is:

Mn,m = M−1
n Mm =

m∏
i=n+1

M ′
i (19.5)

Figure 19.2 shows an example of motion integration with matrices. As we will
show later in Section 19.3.5 Equation 19.5 will support the integration of the
motion between two nonconsecutive frames (multi-step estimation).

19.3.4 Smoothness Motion Constraint

Optical flow and/or stereo can deliver false information about 3D position or
image point correspondence between image frames. Some of the points might
also correspond to an independently moving object. A robust method should
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Fig. 19.2. The integration of motion over time can be obtained by just multiplying
the individual motion matrices. Every circle denotes the state (position and orienta-
tion) of the camera at time ti. Every vector indicates the motion between two states
in 3D-space.

still be able to give accurate results in such situations. If the frame rate is
high enough in order to obtain a smooth motion between consecutive frames,
then the current motion is similar to the immediate previous motion. This
is easily obtained in crash test video analysis since typical frame rates are
500 or 1,000 Hz. Therefore, before including the pair of points #pi and #xi into
their corresponding data sets P and X, we evaluate if the vector #vi = −−→pixi

indicates a coherent movement. Let us define #m =
[
ẋmax ẏmax żmax 1

]
as

the maximal accepted error of the position of a 3D point with respect to
a predicted position. Based on our previous ego-motion estimation step we
evaluate the motion coherence of the vector #vi as:

#ci = M ′
k−1#xi − #pi (19.6)

i.e., the error of our prediction. If the absolute value of any component of ci

is larger than #m the pair of points are discarded and not included in the data
sets for the posterior computation of relative orientation. Otherwise we weight
the pair of points as the ratio of change with respect to the last motion:

wi = 1 − ‖#ci‖2

‖#m‖2
(19.7)

which is later used in Equation 19.1. Equations 19.6 and 19.7 define the
smoothness motion constraint (SMC). Besides using the prediction error,
one could also incorporate the measurement accuracy of the triangulated 3D
points. This absolute geometric accuracy decreases quadratically with the
measured distance. This geometric stereo accuracy could be included as part
of the weight, but this makes little difference for points with similar depth,
which is the case for the types of objects we investigate.

19.3.5 Multi-frame Estimation

Single step estimation, i.e., the estimation of the motion parameters from the
current and previous frame is the standard case in most approaches. If we
are able to track points over m frames, then we can also compute the motion



460 S.K. Gehrig et al.

Fig. 19.3. Multi-frame approach. Circles represent the position and orientation
of the camera. Vectors indicate motion in 3D-space. M̃4 (single step estimation)
and M−1

1,3M̃1,4 (multistep estimation) are interpolated in order to obtain the final
estimation M ′

4.

between the current and the m previous frames and integrate this motion
into the single step estimation (see Figure 19.3). The estimation of motion
between frame m and the current frame k (m < k − 1) follows exactly the
same procedure as explained above. Only when applying the SMC, a small
change takes place, since the prediction of the position for k−m frames is not
the same as for a single step. In other words, the matrix M ′

k−1 of Equation 19.6
is not valid any more. If the single step estimation for the current frame was
already computed as M̃k Equation 19.6 becomes:

#ci = M−1
k−mMk−1M̃k#xi − #pi. (19.8)

Equation 19.8 represents the estimated motion between times tk−m and tk−1

(from Equation 19.5), updated with the current simple step estimation of time
tk. This allows the SMC to be even more precise, since the uncertainty in the
movement is now based on an updated prediction. On the contrary in the
single step estimation, the uncertainty is based on a position defined by the
last motion.

Once the camera motion matrix M̃m,k between times tk−m and tk is ob-
tained, it is integrated with the single step estimation. This is performed by
an interpolation. The interpolation of motion matrices makes sense if they
are estimations of the same motion. This is not the case since the single step
motion matrix is referred to as the motion between the last two frames and the
multistep motion matrix as the motion between m frames in the past to the
current one. Thus, the matrices to be interpolated are M̃k and M−1

m,k−1M̃m,k

(see Figure 19.3). The corresponding rotation matrices are converted to
quaternions in order to apply a spherical linear interpolation. The interpo-
lated quaternion is converted to the final rotation matrix Rk. Translation
vectors are linearly interpolated, obtaining the new translation vector #tk. The
factors of the interpolation are given by the weighted sum of the quadratic
deviations obtained when computing the relative motion of Equation 19.1.

The multi-frame approach performs better thanks to the integration of
more measurements. It also reduces the integration of the errors produced
by the single-step estimation between the considered time points. In fact, our
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experiments have shown that without the multi-frame approach the estimation
degenerates quickly and, normally, after a few hundred frames the ego-position
diverges dramatically from the true solution. Thus, the multi-frame approach
provides additional stability to the estimation process.

19.4 Model-free Pose Estimation

19.4.1 Adaptions to the Ego-motion Estimation Algorithm

In our pose estimation scenario, the stereo camera system remains static and
the observed object moves. All equations shown above remain the same since
the relative motion is identical. However, the smoothness motion constraint is
not related to the motion of the camera anymore but to the observed object.
We obtain the initial object position with the initial stereo computation. From
there, we transform the motion of the object back into the static reference
frame and compare the predicted position via smoothness motion constraint
to the measured position. This way, tracks that are not on the observed object
can be eliminated for pose estimation.

19.4.2 Stereo and Optical Flow Computation

We describe shortly the stereo and optical flow algorithms used in the ex-
perimental results of Section 19.5. The stereo algorithm works based on a
coarse-to-fine scheme in which a Gaussian pyramid for left and right images
is constructed with a sampling factor of two. The search for the best dispar-
ity is only performed at the top level of the pyramid and then a translation
of the disparity map is made to the next level, where a correction is done
within an interval 1 of the calculated disparity.We use the sum of squared
differences as the default correlation function. Different filters and constraints
are applied between pyramid translations. The zero-mean normalized cross-
correlation (ZNCC) is used in order to check the confidence of the match. A
match is considered reliable if the ZNCC coefficient is larger than a predefined
threshold (0.7 in our experiments). Dynamic programming can also be applied
between pyramid translations in order to eliminate matches which invalidate
the ordering constraint. Finally a sub-pixel disparity map is computed as the
last step in the pyramid. This is achieved by fitting a second degree curve to
the best match and its neighbors and finding the sub-pixel disparity where the
slope is zero in the quadratic function. The pyramidal correlation-based stereo
computation is described in its initial version in [21]. As a preprocessing step
to the stereo algorithm the input images are rectified, i.e., lense distortion and
slight orientation deviations from the parallel configuration are removed. We
use a planar rectification as described in [22].

The tracking algorithm we use for the computation of optical flow is the
Kanade/Lucas/Tomasi (KLT) tracker. An extended description of the algo-
rithm can be found in [23] and therefore we skip the description of this method



462 S.K. Gehrig et al.

here. Our experience with different tracker algorithms has shown that the KLT
tracker can track feature points with a small error over tens of frames.

Both algorithms can be substituted with other stereo or tracking algo-
rithms. A pure optical flow without tracking cannot be used directly for multi-
frame estimation since the flow computation is by definition only performed
at integer positions.

19.4.3 Object Tracking and Point Selection

We select the object of interest manually in the scene. For that purpose, we
mark a rectangular or circular region in the image. From there on, the object is
tracked automatically using the average motion vector of the observed object.
To obtain that motion vector, all tracks that originate within the selected
region of interest are considered for pose estimation. But only tracks that pass
the smoothness motion constraint are used for average motion computation.
This way, partial occlusion is handled easily, since these flow vectors are not
consistent with the current pose. Therefore, the manual selection does by no
means require to be precise as long as the majority of the flow vectors in
the selected region corresponds to the object of interest. No precise object
boundaries such as silhouettes must be extracted.

19.4.4 The Crash Test Scenario

The algorithm described above is a general technique to obtain a relative pose
estimate of a rigid object. We apply this method to the crash test scenario.
Compared to standard Human Motion Capture the scenarios differ in several
ways:

• The sequences are captured at a frame rate of 500 or 1,000 Hz.
• The image resolution for vehicle crashes is typically 1500 by 1100 pixels.
• The imaging setup covers the whole crash scene, i.e., a crash test dummy

might only cover a very small image area. Even worse, the crash test
dummies inside the car are occluded by the door and sometimes by the
air bag.

• There is no light source within the crash vehicle, so the crash test dummy
silhouettes are often not visible due to shading effects.

In Figure 19.4, two typical crash scenarios are shown. On the left side,
the standard EuroNCAP (European New Car Assessment Program) offset
crash is shown. The car drives onto an aluminum barrier with 40% overlap.
Therefore, the car moves laterally during the crash. Another typical scenario
is the pedestrian crash is shown at the right side of Figure 19.4. Here, the car
approaches at a speed of 10 m/s. The full motion of the pedestrian dummy is
of interest here.
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Fig. 19.4. Two typical crash test scenarios. EuroNCAP offset crash (left) and
pedestrian crash (right).

We also investigated a so-called component crash where only a part of
a crash experiment is conducted. The “Free-Motion-Head” experiment simu-
lates the effect of the crash test dummy hitting the engine hood in a pedestrian
crash. Other component crashes include lower-leg impact crash, sled crash,
pole crash and others.

19.5 Results

19.5.1 Parameters

For our results, we used the parameters listed in Table 19.1 unless oth-
erwise noted. For the initial pose estimation, the algorithm automatically
increases the tolerance ranges if the minimum number of points is not
reached. Once multi-frame estimation is possible, this situation does not
reoccur.

The camera setup for the offset crash and the pedestrian crash was very
similar: The baseline was 30cm and the camera resolution was 1504 by 1128
pixels (type RedLake 100 NG) recorded at 1,000 Hz for the offset crash and at
500 Hz for the pedestrian crash. Color cameras were used but for the analysis
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Table 19.1. Used parameters for the pose estimation algorithm.

Tolerance in x 0.02 m
Tolerance in y 0.02 m
Tolerance in z 0.03 m
Steps for Multi-frame 20
Minimum number of points for pose estimation 30

Fig. 19.5. Smallest and largest dice simulation image.

only grayscale values were used. The observation distance for both crashes
was between 9 and 10 m for the crash test dummies.

19.5.2 Simulation Results

In order to verify the obtainable accuracy of the algorithm, a simulation scene
with a dice of variable size is used. Image dimensions are 1,600 by 1,200 pixels
(comparable to high speed/high resolution cameras), and the dice is set at
10 m distance (see Figure 19.5). We varied the size of the dice and let it
rotate around the vertical axis to obtain a yaw motion of 2◦/frame from the
camera perspective. Note, that this motion is much harder to measure than
a camera roll motion within the image plane. Stereo and KLT tracks were
computed on these images. The obtained errors are listed in the table below
(see Table 19.2) and show, that even objects covering a small part of the
image allow an accurate pose estimation. The maximum errors, including the
integrated pose errors over 100 frames, stay within 10◦, the average errors
stay well below 1◦.

Multi-frame estimation up to 20 frames was used. Other publications rarely
show data on pose estimation algorithms of objects covering a small image
area, so no comparison data can be provided.
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Table 19.2. Accuracy of pose estimation for varying object sizes. Motions are
described in the camera coordinate system, pitch motion around the horizontal axis,
yaw around the vertical axis and roll in the image plane.

Object size (10 m distance)
0.25 m 0.50 m 0.75 m 1.00 m
70[pix] 140[pix] 210[pix] 280[pix]

Horizontal Angular Resolution ≈2◦ ≈4◦ ≈6◦ ≈8◦

Number of tracks 2, 000 8, 000 11, 000 12, 000

Mean error (± standard deviation)

Δ pitch[◦/frame] 0.04 ± 0.07 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.003
Δ yaw[◦/frame] 0.12 ± 0.25 0.01 ± 0.08 0.01 ± 0.02 0.00 ± 0.02
Δ roll[◦/frame] 0.01 ± 0.01 0.00 ± 0.003 0.00 ± 0.001 0.00 ± 0.001
integrated pitch[◦] 0.52 ± 0.19 0.06 ± 0.09 0.06 ± 0.02 0.01 ± 0.01
slope of integrated 0.08 ± 0.30 0.00 ± 0.07 0.00 ± 0.05 0.00 ± 0.03
yaw[◦/frame]
integrated roll[◦] 0.50 ± 0.18 −0.06 ± 0.09 −0.03 ± 0.02 0.03 ± 0.01

Maximum error

Δ pitch[◦/frame] 1.9 0.42 0.19 0.11
Δ yaw[◦/frame] 4.3 2.9 1.1 0.46
Δ roll[◦/frame] 0.3 0.13 0.04 0.04
integrated pitch [◦] 6.9 1.6 0.4 0.2
integrated yaw [◦] 10.0 2.3 0.8 0.4
integrated roll [◦] 6.7 0.7 0.38 0.22

19.5.3 Crash Results

We verified the algorithm on several crash video scenes comprising of pedes-
trian crashes, offset crashes, and component crashes.

We illustrate the performance showing results of an offset crash, where
the driver dummy almost disappears in the air bag at one moment in the
sequence. The sequence is recorded at 1,000 Hz and consists of 300 images
(see Figure 19.6). Here we used multi-frame estimation up to 100 frames in
order to cope with the massive occlusion.

In Figure 19.7 the used flows for multi-frame estimation are displayed.
No flows outside the dummy head are used for multi-frame estimation since
they move differently from the head and are filtered out by the smoothness
motion constraint. Most good tracks stay at the five-dot-marker at the right
part of the head that stays visible throughout the sequence. The flow vectors
computed for this image are shown in Figure 19.8.

A visual inspection of the quality of the algorithm can be obtained when
all frames of the sequence are warped into the initial pose using the computed
pose estimation. One expects no change for the object of interest whereas the
environment might change arbitrarily. A result of such a comparison is shown in
Figure 19.9. Note the good agreement to the initial pose shown in the left image.
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Fig. 19.6. First and last frame of an A-class offset crash sequence. The middle
image shows the moment of deepest air bag penetration.

Fig. 19.7. Used tracks for multi-frame estimation in frame 200 connecting to frame
101 (100 frames multi-frame estimation). Red (dark) denotes large deviation to the
predicted position, cyan (light) means good agreement.
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Fig. 19.8. KLT tracks on the same scene. Red denotes large flow vectors, green
small flows. the circle shows the tracked region of interest.

Fig. 19.9. 3D view of the scene. The position of the camera is based on the obtained
pose and transforms the head to its initial orientation, viewed from 2.5 m distance.
The right image depicts the transformed pose of image 200 after reappearing from
the air bag.

To further check the plausibility of the measurements, we also tracked the
region of the driver door, specifically the letters. Knowing the vehicle dynamics
of such offset crashes we expect a yaw motion away from the barrier and a
slight camera roll motion due to jumping. Both behaviors can be clearly seen
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Fig. 19.10. Orientation of the text on the driver door throughout the offset crash.
The vehicle pitching up in the air is clearly visible (corresponds to the camera roll
angle), and the yaw motion due to the offset barrier is reflected in the yaw angle.
The camera pitch angle should remain around 0 in the sequence, but exhibits some
noise due to the small size of the object.

in the plot of the integrated angles of the estimated poses in Figure 19.10.
The pitch motion is expected to remain around 0◦ and the deviations from
that illustrate the noise level of the measurements.

For the pedestrian crash video (see Figure 19.11), we tracked the head,
the back, and the lower leg of the pedestrian throughout the sequence of
250 frames with little integrated rotation error. As an example, we show the
results of the back tracking. Here, the pedestrian dummy first rotates mainly
in the image plane, then it rotates its own axis, and finally a slight image
plane rotation occurs again. In Figure 19.13 the flow and the current region
of interest (ROI) is depicted. Note we only adapt the ROI in the image plane.
Due to self occlusion, the initial depth determination might be slightly wrong.

Figure 19.12 shows the used flows for multi-frame estimation. No flows are
on the arm limbs since they move differently from the back and are filtered
out by the smoothness motion constraint.

The obtained integrated orientations and relative orientations are shown
in Figure 19.14. Note the low jitter of the curves.

19.5.4 Comparison with a Model-based Approach

We have conducted a crash component experiment called Free-Motion-Head.
The goal is to investigate the dynamics of a pedestrian head crashing onto
the engine hood. Such a crash has been recorded at 1,000 Hz with two color
cameras with 512 by 384 pixel resolution. The cameras were positioned 27 cm
apart at an intersecting angle of 10◦. The subsequent analysis was done with
the described approach and with a model-based approach that incorporates
shape and texture of the head as described in [24].
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Fig. 19.11. Frame 0, 100, and 200 frame of a pedestrian crash sequence. The
sequence was recorded at 500Hz and the vehicle speed was 36 km/h.

Fig. 19.12. Used tracks for multi-frame estimation in frame 200. All good tracks
stay at the back area of the pedestrian that exhibits a rigid motion.
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Fig. 19.13. KLT tracks on the same scene. Red (light) denotes large flow vectors,
green (dark) small flows. the rotated rectangle shows the tracked region of interest.

Fig. 19.14. Integrated Orientations and relative frame-to-frame orientations for the
pedestrian sequence tracking the back.

In Figure 19.15 some resulting poses of the model-based approach can be
seen. There is no noticeable drift in the sequence. Every image pair shows the
model projection onto the left and the right image.

We compared the trajectories of the two approaches. In Figure 19.16 the
3D trajectories are compared. Both curves exhibit similar jitter. A quantita-
tive comparison of the rotations is difficult due to the fact that our model-free
method only determines rotations with respect to the reference pose of the
first frame. The orientations of the model-based approach can be inspected to
be consistent with the image views in Figure 19.15. The model-free approach
yielded an almost constant view of the head in the stabilized 3D view similar
to Figure 19.9.

From this comparison, one cannot draw conclusions about performance
against ground truth. However, a prior version of the applied model-based
approach has been compared against a marker-based system [25]. There, the
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Fig. 19.15. Model-based result of the free-motion-head sequence.

Fig. 19.16. Trajectory curves of the model-based and our model-free approach. The
jitter is similar. The first part (starting in the center of the graph) of the y–z-graph
is noisier for both approaches due to bad illumination.

finding was that the system has an absolute accuracy of about 3◦ which cor-
responds to the accuracy statements of commercial marker-based approaches.

19.5.5 Computation Time

The computationally relevant parts of the algorithm are rectification, stereo
computation, tracking, and pose estimation. For high resolution images and
tracking a 3D cube of 280 by 280 pixel image size, we obtain 160 ms for
rectification of the full stereo pair, stereo computation time 850 ms, tracking
750 ms, and the actual pose estimation 750 ms (with 20 frames multi-frame
estimation). 12,000 flows were used. Stereo was computed densely and with
one pyramid level with a generous margin of 20 pixels to the left, right, top
and bottom around the region of interest to make use of stereo post-processing
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techniques such as dynamic programming and median filter. The same settings
applied to the dummy head in the offset crash sequence yields 350 ms for
stereo, 250 ms for tracking and 100 ms for pose estimation. 1,000 points
were tracked. These time measurements were conducted on a Pentium M 1.7
GHz laptop.

Real-time capable computation times are obtained for the ego-motion ver-
sion of the algorithm (see [3]).

19.6 Summary

We have proposed a model-free pose estimation algorithm suitable for objects
covering a small image area. Simulation studies and test on real image se-
quences validate the algorithm. We have investigated the accuracy that can
be obtained with such a technique on objects covering a small image area.
The average error is less than 1◦ on a 1.5◦ by 1.5◦ field-of-view object. In
addition, we introduced a simple and efficient tracking technique that is able
to handle partial occlusions.

In the future, we also want to apply more thoroughly 3D models to the
pose estimation process and we want to investigate the accuracy of such a
technique in more detail. Obviously, for human motion capture, a connectivity
of the body parts is necessary to obtain a consistent human motion. One could
embed our model-free approach into a framework such as presented in [25] to
obtain a consistent human motion.
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Summary. Motion capture or mocap systems allow for tracking and recording of
human motions at high spatial and temporal resolutions. The resulting 3D mocap
data is used for motion analysis in fields such as sports sciences, biomechanics,
or computer vision, and in particular for motion synthesis in data-driven com-
puter animation. In view of a rapidly growing corpus of motion data, automatic
retrieval, annotation, and classification of such data has become an important re-
search field. Since logically similar motions may exhibit significant spatio-temporal
variations, the notion of similarity is of crucial importance in comparing motion
data streams. After reviewing various aspects of motion similarity, we discuss as
the main contribution of this chapter a relational approach to content-based mo-
tion analysis, which exploits the existence of an explicitly given kinematic model
underlying the 3D mocap data. Considering suitable combinations of boolean rela-
tions between specified body points allows for capturing the motion content while
disregarding motion details. Finally, we sketch how such relational features can be
used for automatic and efficient segmentation, indexing, retrieval, classification, and
annotation of mocap data.

20.1 Introduction

Historically, the idea of motion capturing originates from the field of gait
analysis, where locomotion patterns of humans and animals were investigated
using arrays of analog photographic cameras, see Chapter 1. With techno-
logical progress, motion capture data or simply mocap data became popular
in computer animation to create realistic motions for both films and video
games. Here, the motions are performed by live actors, captured by a digi-
tal mocap system, and finally mapped to an animated character. However,
the lifecycle of a motion clip in the production of animations is very short.
Typically, a motion clip is captured, incorporated in a single 3D scene, and
then never used again. For efficiency and cost reasons, the reuse of mocap
data as well as methods for modifying and adapting existing motion clips are
gaining in importance. Applying editing, morphing, and blending techniques
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for the creation of new, realistic motions from prerecorded motion clips has
become an active field of research [3, 13, 17, 18, 30, 39]. Such techniques de-
pend on motion capture databases covering a broad spectrum of motions in
various characteristics. Larger collections of motion material such as [7] have
become publicly available in the last few years. However, prior to reusing
and processing motion capture material, one has to solve the fundamental
problem of identifying and extracting logically related motions scattered in a
given database. In this context, automatic and efficient methods for content-
based motion analysis, comparison, classification, and retrieval are required
that only access the raw mocap data itself and do not rely on manually gen-
erated annotations. Such methods also play an important role in fields such
as sports sciences, biomechanics, and computer vision, see, e. g., Chapters 17,
10, and 11.

One crucial point in content-based motion analysis is the notion of similar-
ity that is used to compare different motions. Intuitively, two motions may be
regarded as similar if they represent variations of the same action or sequence
of actions [18]. Typically, these variations may concern the spatial as well as
the temporal domain. For example, the kick sequences shown in Figure 20.1
describe a similar kind of motion even though they differ considerably with
respect to motion speed as well as the direction, the height, and the style
of the kick. How can a kicking motion be characterized irrespective of style?
Or, conversely, how can motion style, the actor’s individual characteristics, or
emotional expressiveness be measured? Such questions are at the heart of mo-
tion analysis and synthesis. We will see that retrieval applications often aim
at identifying related motions irrespective of certain motion details, whereas
synthesis applications are often interested in just those motion details. Among
other aspects of motion similarity, our discussion in Section 20.3 addresses the
issue of separating motion details from motion content.

The difficult task of identifying similar motions in the presence of spatio-
temporal variations still bears open problems. In this chapter, we will discuss
analysis techniques that focus on the rough course of a motion while disregard-
ing motion details. Most of the previous approaches to motion comparison are
based on features that are semantically close to the raw data, using 3D posi-
tions, 3D point clouds, joint angle representations, or PCA-reduced versions

Fig. 20.1. Top: seven poses from a side kick sequence. Bottom: corresponding
poses for a frontal kick. Even though the two kicking motions are similar in some
logical sense, they exhibit significant spatial and temporal differences.
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thereof, see [12, 15, 16, 18, 34, 41]. One problem of such features is their sensi-
tivity towards pose deformations, as may occur in logically related motions.
Instead of using numerical, quantitative features, we suggest to use relational,
qualitative features as introduced in [25]. Here, the following observation is
of fundamental importance: opposed to other data formats such as images
or video, 3D motion capture data is explicitly based on a kinematic chain
that models the human skeleton. This underlying model can be exploited by
looking for boolean relations between specified body points, where the rela-
tions possess explicit semantics. For example, even though there may be large
variations between different kicking motions as illustrated by Figure 20.1,
all such motions share some common characteristics: first the right knee is
stretched, then bent, and finally stretched again, while the right foot is raised
during this process. Afterwards, the right knee is once again bent and then
stretched, while the right foot drops back to the floor. In other words, by
only considering the temporal evolution of the two simple boolean relations
“right knee bent or not” and “right foot raised or not”, one can capture im-
portant characteristics of a kicking motion, which, in retrieval applications,
allows for cutting down the search space very efficiently. In Section 20.4, we
discuss in detail the concept and design of relational motion features. Then,
in Section 20.5, we sketch several applications of relational features, including
automatic and efficient motion segmentation, indexing, retrieval, annotation,
and classification.

In Section 20.2, for the sake of clarity, we summarize some basic facts
about 3D motion capture data as used in this chapter, while describing the
data model and introducing some notation. Further references to related work
are given in the respective sections.

20.2 Motion Capture Data

There are many ways to generate motion capture data using, e. g., mechan-
ical, magnetic, or optical systems, each technology having its own strengths
and weaknesses. For an overview and a discussion of the pros and cons of
such systems we refer to [38]. We exemplarily discuss an optical marker-based
technology, which yields very clean and detailed motion capture data. Here,
the actor is equipped with a set of 40–50 retro-reflective markers attached
to a suit. These markers are tracked by an array of six to twelve calibrated
high-resolution cameras at a frame rate of up to 240 Hz, see Figure 20.2. From
the recorded 2D images of the marker positions, the system can then recon-
struct the 3D marker positions with high precision (present systems have
a resolution of less than a millimeter). Then, the data is cleaned with the
aid of semi-automatic gap filling algorithms exploiting kinematic constraints.
Cleaning is necessary to account for missing and defective data, where the
defects are due to marker occlusions and tracking errors. For many applica-
tions, the 3D marker positions are then converted to a skeletal kinematic chain
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Fig. 20.2. Optical motion capture system based on retro-reflective markers attached
to the actor’s body. The markers are tracked by an array of 6–12 calibrated high-
resolution cameras, typically arranged in a circle.
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Fig. 20.3. (a) Skeletal kinematic chain model consisting of rigid bones that are
flexibly connected by joints, which are highlighted by circular markers and labeled
with joint names. (b) Motion capture data stream of a cartwheel represented as a se-
quence of poses. The figure shows the 3D trajectories of the joints “root”, “rfingers”,
and “lankle”.

representation using appropriate fitting algorithms [9, 29]. Such an abstract
model has the advantage that it does not depend on the specific number and
the positions of the markers used for the recording. However, the mapping
process from the marker data onto the abstract model can introduce signif-
icant artifacts that are not due to the marker data itself. Here, one major
problem is that skeletal models are only approximations of the human body
that often do not account for biomechanical issues, see [42].

In this chapter, we assume that the mocap data is modeled using a kine-
matic chain, which may be thought of as a simplified copy of the human
skeleton. A kinematic chain consists of body segments (the bones) that are
connected by joints of various types, see Figure 20.3(a). Let J denote the set
of joints, where each joint is referenced by an intuitive term such as “root”,
“lankle” (for “left ankle”), “rankle” (for “right ankle”), “lknee” (for “left
knee”), and so on. For simplicity, end effectors such as toes or fingers are also
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regarded as joints. In the following, a motion capture data stream is thought
of as a sequence of frames, each frame specifying the 3D coordinates of the
joints at a certain point in time. Moving from the technical background to
an abstract geometric context, we also speak of a pose instead of a frame.
Mathematically, a pose can be regarded as a matrix P ∈ R

3×|J|, where |J |
denotes the number of joints. The jth column of P , denoted by P j , corre-
sponds to the 3D coordinates of joint j ∈ J . A motion capture data stream
(in information retrieval terminology also referred to as a document) can be
modeled as a function

D : [1 : T ] → P ⊂ R
3×|J|, (20.1)

where T ∈ N denotes the number of poses, [1 : T ] := {1, 2, . . . , T} corresponds
to the time axis (for a fixed sampling rate), and P denotes the set of poses. A
subsequence of consecutive frames is also referred to as a motion clip. Finally,
the curve described by the 3D coordinates of a single body joint is termed 3D
trajectory. This definition is illustrated by Figure 20.3(b).

20.3 Similarity Aspects

One central task in motion analysis is the design of suitable similarity mea-
sures to compare two given motion sequences in a semantically meaningful
way. The notion of similarity, however, is an ill-defined term that depends
on the respective application or on a person’s perception. For example, a user
may be interested only in the rough course of the motion, disregarding motion
style or other motion details such as the facial expression. In other situations,
a user may be particularly interested in certain nuances of motion patterns,
which allows him to distinguish, e. g., between a front kick and a side kick,
see Figure 20.1. In the following, we discuss some similarity aspects that play
an important role in the design of suitable similarity measures or distance
functions.

Typically, two motions are regarded as similar if they only differ by certain
global transformations as illustrated by Figure 20.4(a). For example, one may

Fig. 20.4. (a) Different global transformations applied to a walking motion. (b)
Different styles of walking motions.
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leave the absolute position in time and space out of consideration by using a
similarity measure that is invariant under temporal and spatial translations.
Often, two motions are identified when they differ with respect to a global
rotation about the vertical axis or with respect to a global reflection. Fur-
thermore, the size of the skeleton or the overall speed of the motions may not
be of interest – in such a case, the similarity measure should be invariant to
spatial or temporal scalings.

More complex are variations that are due to different motion styles, see
Figure 20.4(b). For example, walking motions may differ by performance
(e. g., limping, tiptoeing, or marching), by emotional expression or mood (e. g.,
“cheerful walking”, “furious walking”, “shy walking”), and by the complex in-
dividual characteristics determined by the motion’s performer. The abstract
concept of motion style appears in the literature in various forms and is usu-
ally contrasted by some notion of motion content, which is related to the
semantics of the motion. In the following, we give an overview of how motion
style and motion content are treated in the literature.

In the context of gait recognition, Lee and Elgammal, see [21] and Chap-
ter 2, define motion style as the time-invariant, personalized aspects of gait,
whereas they view motion content as a time-dependent aspect representing
different body poses during the gait cycle. Similarly, Davis and Gao [8] view
motions as depending on style, pose, and time. In their experiments, they
use PCA on expert-labeled training data to derive those factors (essentially
linear combinations of joint trajectories) that best explain differences in style.
Rose et al. [32] group several example motions that only differ by style into
verb classes, each of which corresponds to a certain motion content. They
synthesize new motions from these verb classes by suitable interpolation tech-
niques, where the user can control interpolation parameters for each verb.
These parameters are referred to as adverbs controlling the style of the verbs.
To synthesize motions in different styles, Brand and Hertzmann [1] use exam-
ple motions to train so-called style machines that are based on hidden Markov
models (HMMs). Here, motion style is captured in certain parameters of the
style machine such as average state dwell times and emission probability dis-
tributions for each state. On the other hand, motion content is encoded as
the most likely state sequence of the style machine. Hsu et al. [15] propose a
system for style translation that is capable of changing motions performed in
a specific input style into new motions with the same content but a different
output style. The characteristics of the input and output styles are learned
from example data and are abstractly encoded in a linear dynamic system. A
physically based approach to grasping the stylistic characteristics of a motion
performance is proposed by Liu et al. [23]. They use a complex physical model
of the human body including bones, muscles, and tendons, the biomechanical
properties of which (elasticity, stiffness, muscle activation preferences) can be
learned from training data to achieve different motion styles in a synthesis
step. Troje [36] trains linear PCA classifiers to recognize the gender of a per-
son from recorded gait sequences, where the “gender” attribute seems to be
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located in the first three principal components of a suitable motion represen-
tation. Using a Fourier expansion of 3D locomotion data, Unuma et al. [37]
identify certain emotional or mood aspects of locomotion style (for instance,
“tired”, “brisk”, “normal”) as gain factors for certain frequency bands.

Pullen and Bregler [30] also use a frequency decomposition of motion data,
but their aim is not to pinpoint certain parameters that describe specific styles.
Instead, they try to extract those details of the data that account for the
natural look of captured motion by means of multiresolution analysis (MRA)
on mocap data [3]. These details are found in certain high-frequency bands
of the MRA hierarchy and are referred to as motion texture in analogy to
the texture concept in computer graphics, where photorealistic surfaces are
rendered with texture mapping. The term “motion texture” is also used by Li
et al. [22] in the context of motion synthesis, but their concept is in no way
related to the signal processing approach of Pullen and Bregler [30]. In their
parlance, motion textures are generative statistical models describing an entire
class of motion clips. Similar to style machines [1], these models consist of a
set of motion textons together with transition probabilities encoding typical
orders in which the motion textons can be traversed. Each motion texton is a
linear dynamic system (see also Hsu et al. [15]) that specializes in generating
certain subclips of the modeled motion. Parameter tuning at the texton level
then allows for manipulating stylistic details.

Inspired by the performing arts literature, Neff and Fiume [27,28] explore
the aspect of expressiveness in synthesized motions, see Chapter 24. Their
system enables the user to describe motion content in a high-level scripting
language. The content can be modified globally and locally by applying proce-
dural character sketches and properties, which implement expressive aspects
such as “energetic”, “dejected”, or “old man”.

Returning to the walking example of Figure 20.4(b), we are faced with the
question of how a walking motion can be characterized and recognized irre-
spective of motion style or motion texture. Video-based motion recognition
systems such as [2, 14] tackle this problem by using hierarchical HMMs to
model the motion content. The lower levels of the hierarchy comprise certain
HMM building blocks representing fundamental components of full-body hu-
man motion such as “turning” or “raising an arm”. In analogy to phonemes
in speech recognition, these basic units are called dynemes by Green and
Guan, see [14] and Chapter 9, or movemes by Bregler [2]. Dynemes/movemes
and higher-level aggregations of these building blocks are capable of absorb-
ing some of the motion variations that distinguish different executions of a
motion.

The focus of this chapter is the automatic analysis of motion content. How
can one grasp the gist of a motion? How can logically similar motions be iden-
tified even in the presence of significant spatial and temporal variations? How
can one determine and encode characteristic aspects that are common to all
motions contained in some given motion class? As was mentioned earlier, the
main problem in motion comparison is that logically related motions need
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Fig. 20.5. Two walking motions performed in different speeds and styles. The
figure shows the 3D trajectories for “headtop”, “rfingers”, “lfingers”, “rankle”, and
“lankle”. Logically corresponding segments in the two motions are indicated by the
same colors.

Fig. 20.6. Three repetitions of “rotating both arms forwards”. The character on
the left is walking while rotating the arms (2.7 s), whereas the character on the right
is standing on one spot while rotating the arms (2.3 s). The trajectories of the joints
“rankle”, “lankle”, and “lfingers” are shown.

not be numerically similar as was illustrated by the two kicking motions of
Figure 20.1. As another example, the two walking motions shown in Fig-
ure 20.5 can be regarded as similar from a logical point of view even though
they differ considerably in speed and style. Here, using techniques such as
dynamic time warping, one may compensate for spatio-temporal deforma-
tions between related motions by suitably warping the time axis to establish
frame correspondences, see [18]. Most features and local similarity measures
used in this context, however, are based on numerical comparison of spatial
or angular coordinates and cannot deal with qualitative variations. Besides
spatio-temporal deformations, differences between logical and numerical sim-
ilarity can also be due to partial similarity. For example, the two instances of
“rotating both arms forwards” as shown in Figure 20.6 are almost identical as
far as the arm movement is concerned, but differ with respect to the movement
of the legs. Numerically, the resulting trajectories are very different–compare,
for example, the cycloidal and the circular trajectories of the hands. Logically,
the two motions could be considered as similar.

Even worse, numerical similarity does not necessarily imply logical similar-
ity. For example, the two actions of picking up an object and placing an object
on a shelf are very hard to distinguish numerically, even for a human [18]. Here,
the context of the motion or information about interaction with objects would
be required, see also [19]. Often, only minor nuances or partial aspects of a
motion account for logical differences. Think of the motions “standing on a
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Fig. 20.7. A 500-frame ballet motion sampled at 120 Hz, adopted from the CMU
mocap database [7]. The motion comprises two 180◦ right turns, the second of which
is jumped. The trajectory of the joint “ltoes” is shown.

spot” compared to “standing accompanied by weak waving with one hand”:
such inconspicuous, but decisive details are difficult for a full-body similarity
measure to pick up unless the focus of the similarity measure is primarily on
the motion of the hands. As a further example, consider the difference be-
tween walking and running. These motions may of course be distinguished by
their absolute speed. Yet, the overall shape of most joints’ trajectories is very
similar in both motions. A better indicator would be the occurrence of simul-
taneous air phases for both feet, which is a discriminative feature of running
motions.

Last but not least, noise is a further factor that may interfere with a
similarity measure for motion clips. Mocap data may contain significant high-
frequency noise components as well as undesirable artifacts such as sudden
“flips” of a joint or systematic distortions due to wobbling mass or skin shift
[20]. For example, consider the toe trajectory shown in the ballet motion
of Figure 20.7, where the noise shows as extremely irregular sample spacing.
Such noise is usually due to adverse recording conditions, occlusions, improper
setup or calibration, or data conversion faults. On the left hand side of the
figure, there is a discontinuity in the trajectory, which results from a 3-frame
flip of the hip joint. Such flips are either due to confusions of trajectories in
the underlying marker data or due to the fitting process. Ren et al. [31] have
developed automatic methods for detecting “unnatural” movements in order
to find noisy clips or clips containing artifacts within a mocap database. Noise
and artifacts are also a problem in markerless, video-based mocap systems,
see, e. g., [33] as well as Chapters 11, 12, and 15. In view of such scenarios, it
is important to design noise-tolerant similarity measures for the comparison
of mocap data.

20.4 Relational Features

Applications of motion retrieval and classification typically aim at identifying
related motions by content irrespective of motion style. To cope with signif-
icant numerical differences in 3D positions or joint angle configurations that
may distinguish logically corresponding poses, we suggest to use qualitative
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features that are invariant to local deformations and allow for masking out ir-
relevant or inconsistent motion aspects. Note that mocap data, which is based
on an explicit kinematic model, has a much richer semantic content than, for
example, pure video data of a motion, since the position and the meaning of
all joints is known for every pose. This fact can be exploited by considering
features that describe boolean relations between specified points of a pose or
short sequences of poses. Summarizing and extending the results of [25], we
will introduce in this section several classes of boolean relational features that
encode spatial, velocity-based, as well as directional information. The idea of
considering relational instead of numerical features is not new and has already
been applied by, e.g., Carlsson et al. [4, 5, 35] in other domains such as visual
object recognition in 2D and 3D, or action recognition and tracking.

20.4.1 A Basic Example

As a basic example, we consider a relational feature that expresses whether
the right foot lies in front of (feature value one) or behind (feature value zero)
the plane spanned by the center of the hip (the root), the left hip joint, and
the left foot for a fixed pose, cf. Figure 20.8(a). More generally, let pi ∈ R

3,
1 ≤ i ≤ 4, be four 3D points, the first three of which are in general position.
Let 〈p1, p2, p3〉 denote the oriented plane spanned by the first three points,
where the orientation is determined by point order. Then define

B(p1, p2, p3; p4) :=
{

1, if p4 lies in front of or on 〈p1, p2, p3〉,
0, if p4 lies behind 〈p1, p2, p3〉. (20.2)

From this we obtain a feature function F
(j1,j2,j3;j4)
plane : P → {0, 1} for any four

distinct joints ji ∈ J , 1 ≤ i ≤ 4, by defining

F
(j1,j2,j3;j4)
plane (P ) := B(P j1 , P j2 , P j3 ;P j4). (20.3)

The concept of such relational features is simple but powerful, as we will
illustrate by continuing the above example. Setting j1=“root”, j2=“lankle”,

Fig. 20.8. Relational features describing geometric relations between the body
points of a pose that are indicated by circular markers. The respective features
express whether (a) the right foot lies in front of or behind the body, (b) the left
hand is reaching out to the front of the body or not, (c) the left hand is raised above
neck height or not.
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Fig. 20.9. Boolean features F r, F �, and the conjunction F r ∧ F � applied to the
100-frame walking motion D = Dwalk of Figure 20.15.

j3=“lhip”, and j4=“rtoes”, we denote the resulting feature by F r :=
F

(j1,j2,j3;j4)
plane . The plane determined by j1, j2, and j3 is indicated in Fig-

ure 20.8(a) as a green disc. Obviously, the feature F r(P ) is 1 for a pose P
corresponding to a person standing upright. It assumes the value 0 when the
right foot moves to the back or the left foot to the front, which is typical for
locomotion such as walking or running. Interchanging corresponding left and
right joints in the definition of F r and flipping the orientation of the resulting
plane, we obtain another feature function denoted by F �. Let us have a closer
look at the feature function F := F r ∧ F �, which is 1 if and only if both, the
right as well as the left toes, are in front of the respective planes. It turns
out that F is very well suited to characterize any kind of walking or running
movement. If a data stream D : [1 : T ] → P describes such a locomotion,
then F ◦ D exhibits exactly two peaks for any locomotion cycle, from which
one can easily read off the speed of the motion (see Figure 20.9). On the
other hand, the feature F is invariant under global orientation and position,
the size of the skeleton, and various local spatial deviations such as sideways
and vertical movements of the legs. Furthermore, F leaves any upper body
movements unconsidered.

In the following, we will define feature functions purely in terms of geomet-
ric entities that are expressible by joint coordinates. Such relational features
are invariant under global transforms (Euclidean motions, scalings) and are
very coarse in the sense that they express only a single boolean aspect, mask-
ing out all other aspects of the respective pose. This makes relational features
robust to variations in the motion capture data stream that are not correlated
with the aspect of interest. Using suitable boolean expressions and combina-
tions of several relational features then allows to focus on or to mask out
certain aspects of the respective motion.

20.4.2 Generic Features

The four joints in F
(j1,j2,j3;j4)
plane can be picked in various meaningful ways.

For example, in the case j1=“root”, j2=“lshoulder”, j3=“rshoulder”, and
j4=“lwrist”, the feature expresses whether the left hand is in front of or be-
hind the body. Introducing a suitable offset, one can change the semantics of
a feature. For the previous example, one can move the plane 〈P j1 , P j2 , P j3〉
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to the front by one length of the skeleton’s humerus. The resulting feature can
then distinguish between a pose with a hand reaching out to the front and a
pose with a hand kept close to the body, see Figure 20.8(b).

Generally, in the construction of relational features, one can start with
some generic relational feature that encodes information about relative posi-
tion, velocity, or direction of certain joints in 3D space. Such a generic feature
depends on a set of joint variables, denoted by j1, j2, . . ., as well as on a
variable θ for a threshold value or threshold range. For example, the generic
feature Fplane = F

(j1,j2,j3;j4)
θ,plane assumes the value one iff joint j4 has a signed

distance greater than θ ∈ R from the oriented plane spanned by the joints
j1, j2 and j3. Then each assignment to the joints j1, j2, . . . and the thresh-
old θ leads to a boolean function F : P → {0, 1}. For example, by setting
j1=“root”, j2=“lhip”, j3=“ltoes”, j4=“rankle”, and θ = 0 one obtains the
(boolean) relational feature indicated by Figure 20.8(a).

Similarly, we obtain a generic relational feature Fnplane = F
(j1,j2,j3;j4)
θ,nplane ,

where we define the plane in terms of a normal vector (given by j1 and j2)
and fix it at j3. For example, using the plane that is normal to the vector from
the joint j1=“chest” to the joint j2=“neck” fixed at j3=“neck” with threshold
θ = 0, one obtains a feature that expresses whether a hand is raised above
neck height or not, cf. Figure 20.8(c).

Using another type of relational feature, one may check whether certain
parts of the body such as the arms, the legs, or the torso are bent or stretched.
To this end, we introduce the generic feature Fangle = F

(j1,j2;j3,j4)
θ,angle , which as-

sumes the value one iff the angle between the directed segments determined
by (j1, j2) and (j3, j4) is within the threshold range θ ⊂ R. For example, by
setting j1=“rknee”, j2=“rankle”, j3=“rknee”, j4=“rhip”, and θ = [0, 120],
one obtains a feature that checks whether the right leg is bent (angle of
the knee is below 120 degrees) or stretched (angle is above 120 degrees), see
Figure 20.10(a).

Other generic features may operate on velocity data that is approximated
from the 3D joint trajectories of the input motion. An easy example is the
generic feature Ffast = F

(j1)
θ,fast, which assumes the value one iff joint j1 has

an absolute velocity above θ. Figure 20.10(b) illustrates the derived feature

Fig. 20.10. Relational features that express whether (a) the right leg is bent or
stretched, (b) the right foot is fast or not, (c) the right hand is moving upwards in
the direction of the spine or not.
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Fig. 20.11. Top: Absolute velocities in cm/s of the joints “rankle” (‖vrankle‖, black)
and “rtoes” (‖vrtoes‖, gray) in the walking motion D = Dwalk of Figure 20.15. The
dashed line at θfast = 63 cm/s indicates the velocity threshold. Middle: Thresholded
velocity signals for “rankle” and “rtoes”. Bottom: Feature values for F rfootfast =
F rtoes ∧ F rankle.

F rfootfast := F rtoes ∧ F rankle, which is a movement detector for the right foot.
F rfootfast checks whether the absolute velocity of both the right ankle (fea-
ture: F rankle) and the right toes (feature: F rtoes) exceeds a certain velocity
threshold, θfast. If so, the feature assumes the value one, otherwise zero, see
Figure 20.11. This feature is well suited to detect kinematic constraints such
as footplants. The reason why we require both the ankle and the toes to be
sufficiently fast is that we only want to consider the foot as being fast if all
parts of the foot are moving. For example, during a typical walking motion,
there are phases when the ankle is fast while the heel lifts off the ground, but
the toes are firmly planted on the ground. Similarly, during heel strike, the an-
kle has zero velocity, while the toes are still rotating downwards with nonzero
velocity. This feature illustrates one of our design principles for relational fea-
tures: we construct and tune features so as to explicitly grasp the semantics
of typical situations such as the occurrence of a footplant, yielding intuitive
semantics for our relational features. However, while a footplant always leads
to a feature value of zero for F rfootfast, there is a large variety of other motions
yielding the feature value zero (think of keeping the right leg lifted without
moving). Here, the combination with other relational features is required to
further classify the respective motions. In general, suitable combinations of
our relational features prove to be very descriptive for full-body motions.

Another velocity-based generic feature is denoted by Fmove = F
(j1,j2;j3)
θ,move .

This feature considers the velocity of joint j3 relative to joint j1 and assumes
the value one iff the component of this velocity in the direction determined by
(j1, j2) is above θ. For example, setting j1=“belly”, j2=“chest”, j3=“rwrist”,
one obtains a feature that tests whether the right hand is moving upwards
or not, see Figure 20.10 (c). The generic feature F

(j1,j2,j3;j4)
θ,nmove has similar se-

mantics, but the direction is given by the normal vector of the oriented plane
spanned by j1, j2, and j3.
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Fig. 20.12. Relational “touch” features that express whether (a) the two hands
are close together or not, (b) the left hand is close to the leg or not, (c) the left
hand is close to the head or not.

As a final example, we introduce generic features that check whether two
joints, two body segments, or a joint and a body segment are within a θ-
distance of each other or not. Here one may think of situations such as
two hands touching each other, or a hand touching the head or a leg, see
Figure 20.12. This leads to a generic feature F

(j1,j2,θ)
touch , which checks whether

the θ-neighborhoods of the joints j1 and j2 intersect or not. Similarly, one
defines generic touch features for body segments.

20.4.3 Threshold Selection

Besides selecting appropriate generic features and suitable combinations of
joints, the crucial point in designing relational features is to choose the re-
spective threshold parameter θ in a semantically meaningful way. This is a
delicate issue, since the specific choice of a threshold has a strong influence on
the semantics of the resulting relational feature. For example, choosing θ = 0
for the feature indicated by Figure 20.8(b) results in a boolean function that
checks whether the left hand is in front of or behind the body. By increasing θ,
the resulting feature checks whether the left hand is reaching out to the front
of the body. Similarly, a small threshold in a velocity-based feature such as
F

(j1)
θ,fast leads to sensitive features that assume the value 1 even for small move-

ments. Increasing θ results in features that only react for brisk movements. In
general, there is no “correct” choice for the threshold θ—the specific choice
will depend on the application in mind and is left to the designer of the desired
feature set. In Section 20.4.4, we will specify a feature set that is suitable to
compare the overall course of a full-body motion disregarding motion details.

To obtain a semantically meaningful value for the threshold θ in some
automatic fashion, one can also apply supervised learning strategies. One
possible strategy for this task is to use a training set A of “positive” motions
that should yield the feature value one for most of its frames and a training
set B of “negative” motions that should yield the feature value zero for most
of its frames. The threshold θ can then be determined by a one-dimensional
optimization algorithm, which iteratively maximizes the occurrences of the
output one for the set A while maximizing the occurrences of the output zero
for the set B.



20 Content-based Analysis of Motion Capture Data 491

To make the relational features invariant under global scalings, the thresh-
old parameter θ is specified relative to the respective skeleton size. For exam-
ple, the value of θ may by given in terms of the length of the humerus, which
scales quite well with the size of the skeleton. Such a choice handles differences
in absolute skeleton sizes that are exhibited by different actors but may also
result from different file formats for motion capture data.

Another problem arises from the simple quantization strategy based on the
threshold θ to produce boolean features from the generic features. Such a strat-
egy is prone to strong output fluctuations if the input value fluctuates slightly
around the threshold. To alleviate this problem, we employ a robust quan-
tization strategy using two thresholds: a stronger threshold θ1 and a weaker
threshold θ2. As an example, consider a feature F sw that checks whether the
right leg is stretched sideways, see Figure 20.13. Such a feature can be ob-
tained from the generic feature F

(j1,j2,j3;j4)
θ,nplane , where the plane is given by the

normal vector through j1=“lhip” and j2=“rhip” and is fixed at j3=“rhip”.
Then the feature assumes the value one iff joint j4=“rankle” has a signed
distance greater than θ from the oriented plane with a threshold θ = θ1 = 1.2
measured in multiples of the hip width. As illustrated by Figure 20.13(a), the
feature values may randomly fluctuate, switching between the numbers one
and zero, if the right ankle is located on the decision boundary indicated by
the dark disc. We therefore introduce a second decision boundary determined
by a second, weaker, threshold θ2 = 1.0 indicated by the brighter disc in Fig-
ure 20.13(b). We then define a robust version F sw

robust of F sw that assumes the
value one as soon as the right ankle moves to the right of the stronger decision
boundary (as before). But we only let F sw

robust return to the output value zero
if the right ankle moves to the left of the weaker decision boundary. It turns
out that this heuristic of hysteresis thresholding [11, Chapter 4] suppresses
undesirable zero–one fluctuations in relational feature values very effectively,
see Figure 20.14.

Fig. 20.13. Relational feature that expresses whether the right leg is stretched
sideways or not. (a) The feature values may randomly fluctuate if the right ankle
is located on the decision boundary (dark disc). (b) Introducing a second “weaker”
decision boundary prevents the feature from fluctuations.
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Fig. 20.14. Top: Distance d of the joint “rankle” to the plane that is parallel to the
plane shown in Figure 20.13(a) but passes through the joint “rhip”, expressed in the
relative length unit “hip width” (hw). The underlying motion is a Tai Chi move in
which the actor is standing with slightly spread legs. The dashed horizontal lines at
θ2 = 1 hw and θ1 = 1.2 hw, respectively, indicate the two thresholds, corresponding
to the two planes of Figure 20.13(b). Middle: Thresholded distance signals using
the Heaviside thresholding function, Hθ; black: stronger threshold, θ1; gray: weaker
threshold, θ2. Bottom: Thresholded distance signal using the robust thresholding
operator Hrobust

θ1,θ2
.

20.4.4 Example of a Feature Set

Exemplarily, we describe a feature set that comprises f = 39 relational fea-
tures. Note that this feature set has been specifically designed to focus on
full-body motions. However, the proposed feature set may be replaced as ap-
propriate for the respective application.

The 39 relational features, given by Table 20.1, are divided into the three
sets “upper”, “lower”, and “mix”, which are abbreviated as u, $ and m, re-
spectively. The features in the upper set express properties of the upper part
of the body, mainly of the arms. Similarly, the features in the lower set ex-
press properties of the lower part of the body, mainly of the legs. Finally, the
features in the mixed set express interactions of the upper and lower part or
refer to the overall position of the body.

Features with two entries in the ID column exist in two versions pertain-
ing to the right/left half of the body but are only described for the right
half – the features for the left half can be easily derived by symmetry. The
abbreviations “hl”, “sw” and “hw” denote the relative length units “humerus
length”, “shoulder width”, and “hip width”, respectively, which are used to
handle differences in absolute skeleton sizes. Absolute coordinates, as used in
the definition of features such as F17, F32, or F33, stand for virtual joints at
constant 3D positions w.r.t. an (X,Y,Z) world system in which the Y -axis
points upwards. The symbols Ymin/Ymax denote the minimum/maximum Y
coordinates assumed by the joints of a pose that are not tested. Features such
as F22 do not follow the same derivation scheme as the other features and are
therefore described in words.



20 Content-based Analysis of Motion Capture Data 493

Table 20.1. A feature set consisting of 39 relational features.

ID set type j1 j2 j3 j4 θ1 θ2 description

F1 /F2 u Fnmove neck rhip lhip rwrist 1.8 hl/s 1.3 hl/s rhand moving
forwards

F3 /F4 u Fnplane chest neck neck rwrist 0.2 hl 0 hl rhand above neck

F5 /F6 u Fmove belly chest chest rwrist 1.8 hl/s 1.3 hl/s rhand moving
upwards

F7 /F8 u Fangle relbow rshoulder relbow rwrist [0◦ , 110◦ ] [0◦ , 120◦ ] relbow bent

F9 u Fnplane lshoulder rshoulder lwrist rwrist 2.5 sw 2 sw hands far apart,
sideways

F10 u Fmove lwrist rwrist rwrist lwrist 1.4 hl/s 1.2 hl/s hands approaching
each other

F11 /F12 u Fmove rwrist root lwrist root 1.4 hl/s 1.2 hl/s rhand moving away
from root

F13 /F14 u Ffast rwrist 2.5 hl/s 2 hl/s rhand fast

F15 /F16 	 Fplane root lhip ltoes rankle 0.38 hl 0 hl rfoot behind lleg

F17 /F18 	 Fnplane (0, 0, 0) (0, 1, 0) (0, Ymin , 0) rankle 1.2 hl 1 hl rfoot raised

F19 	 Fnplane lhip rhip lankle rankle 2.1 hw 1.8 hw feet far apart,
sideways

F20 /F21 	 Fangle rknee rhip rknee rankle [0◦ 110◦ ] [0◦ 120◦ ] rknee bent

F22 	 Plane Π fixed at lhip, normal rhip→lhip. Test: rankle closer to Π than
lankle?

feet crossed over

F23 	
Consider velocity v of rankle relative to lankle in rankle→lankle
direction. Test: projection of v onto rhip→lhip line large?

feet moving
towards each
other, sideways

F24 	 Same as above, but use lankle→rankle instead of rankle→lankle
direction.

feet moving apart,
sideways

F25 /F26 	 F rfootfast 2.5 hl/s 2 hl/s rfoot fast

F27 /F 28 m Fangle neck root rshoulder relbow [25◦ ,

, ,

180◦] [20◦ ,

,

180◦ ] rhumerus abducted

F29 /F30 m Fangle neck root rhip rknee [50◦ , 180◦] [45◦ , 180◦ ] rfemur abducted

F31 m Fplane rankle neck lankle root 0.5 hl 0.35 hl root behind frontal
plane

F32 m Fangle neck root (0, 0, 0) (0, 1, 0) [70◦ 110◦] [60◦ , 120◦ ] spine horizontal

F33 /F34 m Fnplane (0, 0, 0) (0, −1, 0) (0, Ymin , 0) rwrist -1.2 hl -1.4 hl rhand lowered

F35 /F36 m Plane Π through rhip, lhip, neck. Test: rshoulder closer to Π than
lshoulder?

shoulders rotated
right

F37 m Test: Ymin and Ymax close together? Y -extents of body
small

F38 m Project all joints onto XZ-plane. Test: diameter of projected point set
large?

XZ-extents of
body large

F39 m Ffast root 2.3 hl/s 2 hl/s root fast

20.5 Applications

In this section, we show how relational features can be used for efficient mo-
tion retrieval, classification, and annotation. Fixing a set of boolean relational
features, one can label each pose by its resulting feature vector. Such boolean
vectors are ideally suited for indexing the mocap data according to these la-
bels. Furthermore, a motion data stream can be segmented simply by group-
ing adjacent frames with identical labels. Motion comparison can then be
performed at the segment level, which accounts for temporal variations, and
efficient retrieval is possible by using inverted lists. As a further application,
we introduce the concept of motion templates, by which the essence of an en-
tire class of logically related motions can be captured. Such templates, which
can be learned from training data, are suited for automatic classification and
annotation of unknown mocap data.

20.5.1 Temporal Segmentation

We have seen that relational features exhibit a high degree of invariance
against local spatial deformations. In this section, we show how to achieve
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invariance against local temporal deformations by means of a suitable feature-
dependent temporal segmentation. To this end, we fix a list of, say, f ∈ N

boolean relational features, which define the components of a boolean func-
tion F : P → {0, 1}f . From this point forward, F will be referred to as a
feature function and the vector F (P ) as a feature vector or simply a feature
of the pose P ∈ P. Any feature function can be applied to a motion capture
data stream D : [1 : T ] → P in a pose-wise fashion, which is expressed by the
composition F ◦D. We say that two poses P1, P2 ∈ P are F -equivalent if the
corresponding feature vectors F (P1) and F (P2) coincide, i. e., F (P1) = F (P2).
Then, an F -run of D is defined to be a subsequence of D consisting of con-
secutive F -equivalent poses, and the F -segments of D are defined to be the
F -runs of maximal length.

We illustrate these definitions by continuing the example from
Section 20.4.1. Let F 2 := (F r, F �) : P → {0, 1}2 be the combined feature
formed by F r and F � so that the pose set P is partitioned into four
F 2-equivalence classes. Applying F 2 to the walking motion Dwalk results
in the segmentation shown in Figure 20.15, where the trajectories of selected
joints have been plotted. F 2-equivalent poses are indicated by the same tra-
jectory color: the color red represents the feature vector (1, 1), blue the vector
(1, 0), and green the vector (0, 1). Note that no pose with feature vector
(0, 0) appears in Dwalk. Altogether, there are ten runs of maximal length
constituting the F 2-segmentation of Dwalk.

It is this feature-dependent segmentation that accounts for the postulated
invariance under temporal deformations. To be more precise, let us start with
the sequence of F -segments of a motion capture data stream D. Since each
segment corresponds to a unique feature vector, the segments induce a se-
quence of feature vectors, which we simply refer to as the F -feature sequence
of D and denote by F [D]. If M is the number of F -segments of D and if
D(tm) for tm ∈ [1 : T ], 0 ≤ m < M , is a pose of the m-th segment, then
F [D] = (F (D(t0)), F (D(t1)), . . . , F (D(tM−1))). For example, for the data
stream Dwalk and the feature function F 2 from Figure 20.15, we obtain

Fig. 20.15. F 2-segmentation of Dwalk, where F 2-equivalent poses are indicated
by uniformly colored trajectory segments. The trajectories of the joints “head-
top”,“rankle”, “rfingers” and “lfingers” are shown.
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Fig. 20.16. (a) Restricting F 2 = (F r, F �) to its first component results in an F r-
segmentation, which is coarser than the F 2-segmentation shown in Figure 20.15.
(b) Five steps of a slow walking motion performed by an elderly person resulting in
exactly the same F r-feature sequence as the much faster motion of (a).
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. (20.4)

Obviously, any two adjacent vectors of the sequence F [D] are distinct. The
crucial point is that time invariance is incorporated into the F -segments: two
motions that differ by some deformation of the time axis will yield the same
F -feature sequences. This fact is illustrated by Figure 20.16. Another prop-
erty is that the segmentation automatically adapts to the selected features,
as a comparison of Figure 20.15 and Figure 20.16(a) shows. In general, fine
features, i. e., feature functions with many components, induce segmentations
with many short segments, whereas coarse features lead to a smaller number
of long segments.

The main idea is that two motion capture data streams D1 and D2 can
now be compared via their F -feature sequences F [D1] and F [D2] instead
of comparing the data streams on a frame-to-frame basis. This has several
advantages:

1. One can decide which aspects of the motions to focus on by picking a
suitable feature function F .

2. Since spatial and temporal invariance are already incorporated in the fea-
tures and segments, one can use efficient methods from (fault-tolerant)
string matching to compare the data streams instead of applying cost-
intensive techniques such as dynamic time warping at the frame level.

3. In general, the number M of segments is much smaller than the number
T of frames, which accounts for efficient computations.

Next, we will explain how our concept leads to an efficient way of indexing
and searching motion capture data in a semantically meaningful way.

20.5.2 Indexing and Retrieval

In the retrieval context, the query-by-example paradigm has attracted a large
amount of attention: given a query in form of a short motion clip, the task is
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to automatically retrieve all motion clips from the database that are logically
similar to the query. The retrieved motion clips are also referred to as hits
with respect to the query. Several general questions arise at this point:

1. How should the data, the database as well as the query, be modeled?
2. How does a user specify a query?
3. What is the precise definition of a hit?
4. How should the data be organized to afford efficient retrieval of all hits

with respect to a given query?

In Section 20.5.1, we gave an answer to the first question by introducing
the concept of feature sequences, which represent motion capture data streams
as coarse sequences of binary vectors. For the moment, we assume that a
query is given in form of a short motion clip Q. Furthermore, we assume
that the database consists of a collection D = (D1, D2, . . . , DI) of mocap
data streams or documents Di, i ∈ [1 : I]. By concatenating the documents
D1, . . . , DI while keeping track of document boundaries in a supplemental
data structure, we may think of the database D as consisting of one large
document D. Fixing a feature function F : P → {0, 1}f , we use the notation
F [D] = w = (w0, w1, . . . , wM ) and F [Q] = v = (v0, v1, . . . , vN ) to denote the
resulting F -feature sequences of D and Q, respectively. We then simply speak
of the database w and the query v.

Now, the trick is that by incorporating robustness against spatio-temporal
variations into the relational features and adaptive segments, we are able to
employ standard information retrieval techniques using an index of inverted
lists [40]. For each feature vector v ∈ {0, 1}f one stores the inverted list L(v)
consisting of the indices m ∈ [0 : M ] of the sequence w = (w0, w1, . . . , wM )
with v = wm. L(v) tells us which of the F -segments of D exhibit the feature
vector v. As an example, let us consider the feature function F 2 = (F r, F �)
from Figure 20.9 applied to a walking motion D as indicated by Figure 20.15.
From the resulting feature sequence, one obtains the inverted lists L

((
1
1

))
=

{0, 2, 4, 6, 8}, L
((

0
1

))
= {1, 5, 9}, L

((
1
0

))
= {3, 7}, and L

((
0
0

))
= ∅. The

elements of the inverted lists can then be stored in ascending order, account-
ing for efficient union and intersection operations in the subsequent query
stage. In a preprocessing step, we construct an index IDF consisting of the 2f

inverted lists L(v), v ∈ {0, 1}f . Since we store segment positions of the F -
segmentation rather than individual frame positions in the inverted lists, and
since each segment position appears in exactly one inverted list, the index size
is proportional to the number M of segments of D. In particular, the time and
space required to build and store our index structure is linear, opposed to the
quadratic complexity of strategies based on dynamic time warping, see [18].

Recall that two motion clips are considered as similar (with respect to the
selected feature function) if they exhibit the same feature sequence. Adapting
concepts from [6], we introduce the following notions. An exact hit is an ele-
ment k ∈ [0 : M ] such that v is a subsequence of consecutive feature vectors
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in w starting from index k. Using the notation v �k w for this case, one
obtains

v �k w :⇔ ∀i ∈ [0 : N ] : vi = wk+i. (20.5)

The set of all exact hits in the database D is then given by

HD(v) := {k ∈ [0 : M ] | v �k w}. (20.6)

It is easy to see that HD(v) can be evaluated very efficiently by intersecting
suitably shifted inverted lists:

HD(v) =
⋂

n∈[0:N ]

(L(vn) − n), (20.7)

where the substraction of a list and a number is understood component-wise
for every element in the list. As an example, we consider D = Dwalk and
F = F 2 and the query sequence v =

((
1
0

)
,
(

1
1

)
,
(

0
1

))
. Then

HD(v) = {3, 7} ∩ {−1, 1, 3, 5, 7} ∩ {−1, 3, 7} = {3, 7} (20.8)

resulting in two hits starting with the segments 3 and 7, respectively. See also
Figure 20.17 for an illustration.

In many situations, the user may be unsure about certain parts of the
query and wants to leave certain parts of the query unspecified. Or, the user
may want to mask out some of the f components of the feature function F to
obtain a less restrictive search leading to more hits. To handle such situations,
one can employ the concept of fuzzy search. This technique admits at each
position in the query sequence a whole set of possible, alternative feature
vectors instead of a single one, see [6]. Here, a key idea is that the concept of
temporal segmentation can be extended in such a way that segment lengths
within a match not only adapt to the granularity of the feature function, but
also to the fuzziness of the query. The resulting adaptive fuzzy hits can be
computed very efficiently using the same index structure as for the case of
exact hits. For further details on this strategy we refer to [25,26].

We now describe how these techniques can be employed in an efficient mo-
tion retrieval system based on the query-by-example paradigm, which allows
for intuitive and interactive browsing in a purely content-based fashion with-
out relying on textual annotations, see Figure 20.18 for an overview. In the

Fig. 20.17. Upper row: feature sequence F 2[Dwalk]. Below: two exact hits (EH)
for vwalk,1 in F 2[Dwalk], indicated by copies of vwalk,1 that are horizontally aligned
with F 2[Dwalk] at the matching positions.
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Fig. 20.18. Left: The preprocessing stage. Right: The query stage.

preprocessing step, a global feature function F has to be designed that covers
all possible query requirements and provides the user with an extensive set
of semantically rich features. In other words, it is not imposed upon the user
to construct such features (even though this is also possible). Having fixed a
feature function F , an index IDF is constructed for a given database D and
stored on disk. (In practice, we split up the index into several smaller indices
to reduce the number of inverted lists, see [25].) As an example, one may use
the feature set comprising 39 relational features as described in Section 20.4.4.
Note that this feature set has been specifically designed to focus on full-body
motions. However, the described indexing and retrieval methods are generic,
and the proposed test feature set may be replaced as appropriate for the
respective application. Various query mechanisms of such a content-based re-
trieval system can be useful in practice, ranging from isolated pose-based
queries, over query-by-example based on entire motion clips, up to manually
specified geometric progressions. Here, we only consider the case that the in-
put consists of a short query motion clip. Furthermore, the user should be
able to incorporate additional knowledge about the query, e. g., by selecting
or masking out certain body parts in the query. This is important to find, for
example, all instances of “clapping one’s hands” irrespective of any concur-
rent locomotion (recall the problem of partial similarity from Section 20.3.)
To this end, the user selects relevant features from the given global feature
set (i.e., components of F ), where each feature expresses a certain relational
aspect and refers to specific parts of the body. The query-dependent speci-
fication of motion aspects then determines the desired notion of similarity.
In addition, parameters such as fault tolerance and the choice of a ranking
or post-processing strategy can be adjusted. In the retrieval procedure, the
query motion is translated into a feature sequence, which can be thought of as
a progression of geometric constellations. The user-specified feature selection
has to be encoded by a suitable fuzzy query, where the irrelevant features
correspond to alternatives in the corresponding feature values. In the next
step, the adaptive fuzzy hits are efficiently computed using the index. Finally,
the hits may be post-processed by means of suitable ranking strategies. For
further details we refer to [10,25].
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Fig. 20.19. Left: Selected frames from 19 adaptive fuzzy hits for a right foot kick.
The query clip is highlighted. Query features: F17, F18, F20, and F21.; see Table 20.1.
Right: Selected frames from 15 adaptive fuzzy hits for a jump query. Query features:
F3, F4, F25, and F26.

We implemented our indexing and retrieval algorithms in Matlab 6 and
tested them on a database comprising roughly 180 minutes of motion data
drawn from the CMU database [7]. The indexing time for f = 31 features (sim-
ilar to the one of Table 20.1) was roughly 6 minutes. The storage requirement
was reduced from 370 MB (for the entire database) to 7.5 MB (for the in-
dex). The running time to process a query very much depends on the query
length (the number of segments), the respective index, as well as the number
of resulting hits. For example, Figure 20.19 (left) shows 19 adaptive fuzzy hits
for a “kicking” motion (retrieval time: 5 ms), 13 of which are actual martial
arts kicks. The remaining six motions (right hand side) are ballet moves con-
taining a kicking component. A manual inspection of the database showed
that there were no more than the 13 reported kicks in the database. Similarly,
Figure 20.19 (right) shows the top 15 out of 133 hits for a very coarse adap-
tive fuzzy “jumping” query, which basically required the arms to move up
above the shoulders and back down, while forcing the feet to lift off. The hits
were ranked according to a simple strategy based on a comparison of segment
lengths. This example demonstrates how such coarse queries can be applied
to efficiently reduce the search space while retaining a superset of the desired
hits.

One major limitation of this retrieval approach is that using all features
at the same time in the retrieval process is far too restrictive – even in com-
bination with fault tolerance strategies such as fuzzy or mismatch search –
possibly leading to a large number of false negatives. Therefore, the user has
to specify for each query a small subset of suitable features that reflect the
characteristic properties of the respective query motion. Not only can this be
a tedious manual process, but it also prohibits batch processing as needed
in morphing and blending applications, where it may be required to iden-
tify similarities in a large database for many different motion clips without
manual intervention. In the following, we introduce methods for automatic
motion classification, annotation, and retrieval that overcome this limitation –
however, at the expense of efficiency.
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20.5.3 Motion Templates (MTs)

We now introduce a method for capturing the spatio-temporal characteristics
of an entire motion class of logically related motions in a compact matrix
representation called a motion template (MT). Given a set of training motions
representing a motion class, we describe how to learn a motion template that
explicitly encodes the consistent and the variable aspects of this class. Motion
templates have a direct, semantic interpretation: an MT can easily be edited,
manually constructed from scratch, combined with other MTs, extended, and
restricted, thus providing a great deal of flexibility. One key property of MTs is
that the variable aspects of a motion class can be automatically masked out in
the comparison with unknown motion data. This strategy can also be viewed
as an automatic way of selecting appropriate features for the comparison in a
locally adaptive fashion.

In the following, we explain the main idea of motion templates and refer
to [24] for details. Given a set of γ ∈ N example motion clips for a specific
motion class, such as the four cartwheels shown in Figure 20.20, the goal is
to automatically learn an MT representation that grasps the essence of the
class. Based on a fixed set of f relational features, we start by computing the
relational feature vectors for each of the γ motions. Denoting the length of a
given motion by K, we think of the resulting sequence of feature vectors as a
feature matrix X ∈ {0, 1}f×K as shown in Figure 20.20, where, for the sake of
clarity, we only display a subset comprising ten features from the feature set
of Table 20.1. Now, we want to compute a semantically meaningful average
over the γ feature matrices, which would simply be their arithmetic mean if
all of the motions agreed in length and temporal structure. However, our ma-
trices typically differ in length and reflect the temporal variations that were
present in the original motions. This fact necessitates some kind of temporal
alignment prior to averaging, which is done by an iterative, reference-based
time warping procedure, see [24] for details. Once the matrices have the same
length, their average is computed, yielding as output a matrix with f rows,

Fig. 20.20. Left: Selected frames from four different cartwheel motions. Right:
Corresponding relational feature matrices for selected features. The columns repre-
sent time in frames, whereas the rows correspond to boolean features encoded as
black (0) and white (1). They are numbered in accordance with the features defined
in Table 20.1.
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Fig. 20.21. Left: Class MT for “CartwheelLeft” based on γ = 11 training motions.
The framed regions are discussed in Section 20.5.3. Right: Corresponding quantized
class MT.

referred to as a motion template. The matrix entries are real values between
zero and one. Figure 20.21 shows a motion template obtained from γ = 11
cartwheel motions (including the four cartwheels indicated by Figure 20.20),
which constitutes a combined representation of all 11 input motions. An MT
learned from training motions belonging to a specific motion class C is re-
ferred to as the class template for C. Black/white regions in a class MT, see
Figure 20.21, indicate periods in time (horizontal axis) where certain features
(vertical axis) consistently assume the same values zero/one in all training
motions, respectively. By contrast, different shades of gray indicate inconsis-
tencies mainly resulting from variations in the training motions (and partly
from inappropriate alignments).

To illustrate the power of the MT concept, which grasps the essence of
a specific type of motion even in the presence of large variations, we discuss
the class template for the class “CartwheelLeft”, which consists of cartwheel
motions starting with the left hand, see Figure 20.21. Considering the regions
marked by boxes in Figure 20.21, the white region (a) reflects that during the
initial phase of a cartwheel, the right hand moves to the top (feature F5 in
Table 20.1). Furthermore, region (b) shows that the right foot moves behind
the left leg (F15). This can also be observed in the first poses of Figure 20.20.
Then, both hands are above the shoulders (F3, F4), as indicated by region (c),
and the actor’s body is upside down (F33, F34), see region (d) and the second
poses in Figure 20.20. The landing phase, encoded in region (e), exhibits large
variations between different realizations, leading to the gray/colored regions.
Note that some actors lost their balance in this phase, resulting in rather
chaotic movements, compare the third poses in Figure 20.20.

20.5.4 MT-based Motion Annotation and Retrieval

Given a class C of logically related motions, we have derived a class MT
XC that captures the consistent as well as the inconsistent aspects of all
motions in C. Our application of MTs to automatic annotation and retrieval
are based on the following interpretation: the consistent aspects represent the
class characteristics that are shared by all motions, whereas the inconsistent
aspects represent the class variations that are due to different realizations. For
a given class MT XC , we introduce a quantized MT by replacing each entry
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of XC that is below δ by zero, each entry that is above 1 − δ by one, and all
remaining entries by 0.5. (In our experiments, we used the threshold δ = 0.1.)
Figure 20.21 (right) shows the quantized MT for the cartwheel class.

Now, let D be an unknown motion data stream. The goal is to identify
subsegments of D that are similar to motions of a given class C. Let X ∈
{0, 1, 0.5}f×K be a quantized class MT of length K and Y ∈ {0, 1}f×L the
feature matrix of D of length L. We define for k ∈ [1 : K] and $ ∈ [1 : L] a local
cost measure cQ(k, $) between the k-th column X(k) of X and the $-th column
Y ($) of Y . Let I(k) := {i ∈ [1 : f ] | X(k)i �= 0.5}, where X(k)i denotes a
matrix entry of X for k ∈ [1 : K], i ∈ [1 : f ]. Then, if |I(k)| > 0, we set

cQ(k, $) =
1

|I(k)|
∑

i∈I(k)

|X(k)i − Y ($)i|, (20.9)

otherwise we set cQ(k, $) = 0. In other words, cQ(k, $) only accounts for the
consistent entries of X with X(k)i ∈ {0, 1} and leaves the other entries un-
considered. Based on this local distance measure and a subsequence variant of
dynamic time warping, one obtains a distance function ΔC : [1 : L] → R∪{∞}
as described in [24] with the following interpretation: a small value ΔC($) for
some $ ∈ [1 : L] indicates the presence of a motion subsegment of D starting
at a suitable frame a� < $ and ending at frame $ that is similar to the mo-
tions in C. Note that using the local cost function cQ of (20.9) based on the
quantized MT (instead of simply using the Manhattan distance) is of crucial
importance, as illustrated by Figure 20.22.

In the annotation scenario, we are given an unknown motion data stream
D for which the presence of certain motion classes C1, . . . , CP at certain times
is to be detected. These motion classes are identified with their respective class
MTs X1, . . . , XP , which are assumed to have been precomputed from suitable
training data. Now, the idea is to match the input motion D with each of the
Xp, p = 1, . . . , P , yielding the distance functions Δp := ΔCp

. Then, every
local minimum of Δp close to zero indicates a motion subsegment of D that is
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Fig. 20.22. (a) Distance function ΔC based on cQ of (20.9) for the quantized
class MT “CartwheelLeft” and a motion sequence D consisting of four cartwheels
(reflected by the four local minima close to zero), four jumping jacks, and four
squats. The sampling rate is 30 Hz. (b) Corresponding distance function based on
the Manhattan distance without MT quantization, leading to a much poorer result.
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Fig. 20.23. Resulting distance functions for a 35-s gymnastics sequence (30 Hz)
consisting of four jumping jacks, four repetitions of a skiing coordination exercise,
two repetitions of an alternating elbow-to-knee motion, and four squats with respect
to the quantized class MTs for (a) “JumpingJack”, (b) “ElbowToKnee”, and (c)
“Squat”.

similar to the motions in Cp. As an example, we consider the distance functions
for a 35-s gymnastics motion sequence with respect to the motion classes
C1=“JumpingJack”, C2=“ElbowToKnee”, and C3=“Squat”, see Figure 20.23.
For C1, there are four local minima with a cost of nearly zero between frames
100 and 300, which exactly correspond to the four jumping jacks contained
in D, see Figure 20.23(a). Note that the remaining portion of D is clearly
separated by Δ1, yielding a value far above 0.1. Analogously, the two local
minima in Figure 20.23(b) correspond to the two repetitions of the elbow-to-
knee exercise and the four local minima in Figure 20.23(c) correspond to the
four squats.

Similarly, motion templates can be used for content-based motion retrieval,
where the goal is to automatically extract all motion clips from a database
that belong to a specified motion class C. To this end, we compute a distance
function ΔC with respect to the precomputed quantized class MT and the
database documents. Then, each local minimum of ΔC below some quality
threshold τ > 0 indicates a hit, see [24] for details. As it turns out, the
MT-based retrieval strategy works with high precision and recall for complex
motions (such as a cartwheel) even in the presence of significant variations,
whereas for short motions with few characteristic aspects it may produce a
large number of false positives. Another drawback of the proposed MT-based
retrieval strategy is its computational complexity, which is linear in the size
of the database. For the future, we plan to combine the MT-based retrieval
strategy with index-based retrieval techniques as proposed in Section 20.5.2.
First experiments have shown that the use of suitably defined keyframes is
a promising concept to cut down the set of candidate motions in an index-
based preprocessing step. Such a preselection may also be suitable to eliminate
a large number of false positives.
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20.6 Conclusion and Future Work

In this chapter, various similarity aspects of 3D motion capture data have
been discussed and reviewed. We then introduced the concept of relational
features that are particularly suited for the analysis of motion content and
that facilitate logical (in contrast to numerical) comparison of motions. Once
the features have been specified, they can be used for motion segmentation,
efficient indexing, and fast content-based retrieval. As a further application, we
introduced the concept of a motion template, which encodes the characteristic
and the variable aspects of an entire motion class. By automatically masking
out the variable aspects of a motion class in the annotation and retrieval
process, logically related motions can be identified even in the presence of
large variations and without any user intervention. We will investigate how to
automatically learn characteristic keyframes in our template representation,
which can then be used to cut down the search space efficiently. As a further
promising application in the field of computer vision, we plan to use motion
templates and related motion representations as a-priori knowledge to stabilize
and control markerless tracking of human motions in video data, see also
Chapters 11, 12, and 15.
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The Representation of Rigid Body Motions
in the Conformal Model of Geometric Algebra

Leo Dorst

Intelligent Systems Laboratory
University of Amsterdam, The Netherlands

Summary. In geometric algebra, the conformal model provides a much more pow-
erful framework to represent Euclidean motions than the customary “homogeneous
coordinate” methods. It permits elementary universal operators that can act to dis-
place not only points, but also lines and planes, and even circles and spheres. We
briefly explain this model, focusing on its essential structure. We show its potential
use for motion capture by presenting a closed form for the bivector logarithm of a
rigid body motion, permitting interpolation of motions and combination of motion
estimates.

21.1 Algebra for Geometry

In the view of Felix Klein (1849–1925), a geometry is characterized by its
motions, and its primitive “objects” are merely identified parts of space that
transform well under these motions. Geometric algebra elevates this abstract
principle to a constructive representation.

In this chapter, we focus on Euclidean geometry. The motions that de-
fine this geometry are the isometries, the group of motions that preserve the
Euclidean distance between points. This includes the “proper” motions of
translation and rotation, and the “improper” reflections. We will construct a
representation in which such motions are represented as versors, which are
algebraically universal operators that can be applied to arbitrary elements of
the geometry. To understand the power of such a representation compared
to the more common matrices in homogeneous coordinates, we first give an
abstract description of the representational principles.

Geometric algebra represents both “objects” (points, lines, planes, circles,
spheres) and “operators” (rotations, translations, reflections) on the same
representational level. All are basic elements of computation. An operator
V is represented as a versor, which acts on another element X (object or
operator) by a sandwiching product between V and its inverse V −1:

X �→ (−1)ξυ V X V −1,
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where the sign depends on the “grades” ξ and υ of X and V . Grades are
representative dimensionalities, and somewhat technical; let us ignore the sign
they contribute for now, and focus on the essential sandwiching structure of
the operator representation.

The product involved in the two multiplications in the sandwiching prod-
uct is the fundamental geometric product (denoted by a blank space). It is
defined on any vector space R

n over the scalars R with bilinear form Q (which
is a symmetrical scalar-valued function of two vectors defining the metric of
the vector space). Such a space contains vectors (denoted in lower case) and
a well-defined addition and scalar multiplication among them. The geometric
product acts on it to produce a more extended structure from the vector space,
its geometric algebra Rn, of which the general elements are denoted by upper
case. They include vectors and scalars (which can be more specifically denoted
by lower case and lower case Greek, respectively). The geometric product is
completely defined by the following properties:

1. It is distributive over addition: A (B + C) = AB + AC.
2. It is associative: A (BC) = (AB)C.
3. Any vector squares to a scalar determined by the metric: a a = Q(a, a).
4. Scalars commute: αX = X α (but general elements not necessarily).

These simple properties define a surprisingly powerful mathematical structure,
according to some (such as [8]) quite sufficient to encode all of geometry (when
augmented with a natural concept of differentiation).

The principle of the representation of geometry used in geometric alge-
bra is to encode all geometric constructions as linear combinations of geo-
metric products, and the geometric motions as versors. Then the structure
preservation of the constructions under the motions, as demanded by Klein,
is automatically guaranteed. For example, let A◦B be the intersection of two
elements A and B (such as a line and a sphere), in geometric algebra encoded
as a linear combination of geometric products, and V a motion versor. Ap-
plying the properties of the geometric product, we find:

V (A ◦B)V −1 = (V AV −1) ◦ (V B V −1).

This is geometric structure-preservation of the intersection: “the motion of
the intersection is identical to the intersection of the moved elements”. This
property is clearly automatic in the versor representation.

When we construct new objects from the basic vectors of the vector space
R

n by such structurally preserved construction operators (for instance, a line
as connecting two points, or as the intersection of two planes), we therefore get
universal motions for all elements through the sandwiching operator with V .
This makes for a very pleasant algebra of geometry, in which you never have to
think about which ‘method’ to use to apply a motion to a newly constructed
object. This is in stark contrast to the usual homogeneous coordinates, in
which the 4×4 motion matrices for points and planes are different, and the
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direct motion of lines involves 6×6 matrices on Plücker coordinates which
are even considered too advanced to teach in most introductions to computer
graphics or robotics, despite the elementary importance of lines in geometric
constructions. In homogeneous coordinates and the matrices based on them,
the representation gets in the way of the geometry, sensible geometric oper-
ators become dependent on their arguments, and the software becomes more
involved than it needs to be. By contrast, versors are universally applicable.

A reform program is currently underway to redo the classical geometries
in geometric algebra. This involves defining an interface between the space
to be represented, and a well-chosen geometric algebra (i.e., selecting a rep-
resentational space and a metric Q). For motion capture, we are particularly
interested in Euclidean geometry. The geometric algebra for Euclidean geom-
etry is called the conformal model [6]. It represents Euclidean motions by
versors.

21.2 The Structure of Geometric Algebra

Before we explain the specific use of the conformal model to encode Euclidean
geometry, we need to give some more insight in the structure of geometric
algebra in general. The explanation is necessarily brief, much more detail
may be found in other sources such as [3].

21.2.1 Products

The geometric product is fundamental to geometric algebra, but several de-
rived products are convenient to have. All these derived products can be
defined in terms of linear combinations of geometric products, so that their
structure is preserved when versors are applied to them.

1. The classical inner product of two vectors p and q is defined in terms of
the bilinear form as p · q ≡ Q(p, q). It is found in geometric algebra as the
symmetric part of the geometric product of p and q:

p · q = 1
2 (p q + q p).

This follows from developing the scalar (p+q) (p+q) in terms of both the
geometric product and the inner product: (p+q) (p+q) = p p+p q+q p+q q,
and also (p+ q) (p+ q) = (p+ q) · (p+ q) = p · p+2p · q+ q · q; the identity
follows.
The inner product can be extended to other elements of the geometric
algebra as a contraction, denoted !, see [3] and [4].

2. The anti-symmetric part of the geometric product of two vectors p and q
is also a product in its own right, called the outer product:

p ∧ q = 1
2 (p q − q p).
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It results in an element called a 2-blade (which is neither a vector, nor
a scalar). A 2-blade represents the 2-dimensional vector space spanned
by p and q. This outer product is less familiar than it deserves to be: it
spans subspaces as elements of computation. (It is the same outer product
as used in Grassmann algebra, for readers familiar with that.) The outer
product can be extended to more factors by associativity. An outer prod-
uct of k terms is called a k-blade, and represents a k-dimensional subspace
of the representative space.

3. You can divide by a vector, for the inverse of a vector v under the geometric
product is v−1 = v/(v ·v). This follows simply from v v = v ·v+v∧v = v ·v
(due to the antisymmetry of the outer product) and the commutation of
the scalar v · v.

Division extends to higher order elements like blades and versors.
Elements with norm 0 (such as the null vectors we encounter later) do
not have a division.

21.2.2 Objects and Relationships

The elementary objects of geometric algebra are the k-dimensional linear sub-
spaces of the original vector space. These become elements of computation
through the outer product, which generates them as k-blades. When using
geometric algebra in an application, one chooses a specific model, i.e., a rela-
tionship between aspects of reality and elements of the geometric algebra. The
proper subspaces of the representational algebra can then actually represent
more involved elements of reality, such as offset subspaces, or general circles.
We enumerate some representational principles for the relationships of such
objects.

1. The points of the real space are modeled by vectors in the representation
space.

2. In the direct representation of a geometric object by a k-blade A, solving
the equation x ∧A = 0 for the vector x results in the points contained in
the object.

3. In the dual representation of a geometric object by a k-blade D, solving
the equation x!D = 0 for the vector x results in the points contained in
the object.

4. The relationship between the two representatives of the object is through
dualization, denoted as D = A∗. In geometric algebra, dualization is
achieved through division by the highest order blade in the representa-
tion space. Such a blade is called a pseudoscalar, it is of grade n in an
n-dimensional space and denoted In.

5. The direct representation specifies an object by ‘containment’ in a repre-
sentative blade A, the dual representation specifies an object by giving a
perpendicular blade D. Dualization is therefore like “taking the orthogo-
nal complement”. The direct representation does not require a metric and
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is mathematically more fundamental, but in many metric models the dual
representation is more compact and convenient.

6. The representation of the object A∩B that is the intersection of two ob-
jects directly represented as the blades A and B can be computed through

(A ∩B)∗ = B∗ ∧A∗.

The dual representation of this meet is therefore the outer product of the
duals. (There is some small print here, the blades A and B have to be “in
general position”, for details see [3].)

7. The element that intersects the elements A and B perpendicularly has as
direct representation B∗∧A∗. It is called the “plunge” of A and B, see [3].

21.2.3 Versors are Orthogonal Transformations

We will represent operators by versors; they produce linear transformations,
though not of the most general kind.

1. The versor product implements an orthogonal transformation, for the vec-
tor mapping x �→ (−1)υ V xV −1 preserves the inner product of vectors.
This is easily shown:

x·y = V V −1 (x·y) = V (x·y) V −1 = 1
2
V (x y+y x) V −1 = (V x V −1)·(V y V −1).

2. Versors representing consecutive transformations are formed by the geo-
metric product of the versors of the constituent transformations. This
follows from

(−1)ξωW
(
(−1)ξυV X V −1

)
W−1 = (−1)ξ(ω+υ)(W V )X (W V )−1

,

and the fact that the (even or odd) parity of the grades ω and υ of W
and V is additive.

3. Any versor can be rescaled to a unit versor (for which V !V = 1). The
basic versor transformation is provided by a unit vector. A general unit
versor can be written as the geometric product of unit vectors (though
this factorization is usually not unique).
The application of a unit vector versor u to a vector x gives:

x �→ −uxu−1 = −(−xu + 2 (x · u))u−1 = x− 2 (x · u)u−1.

Realizing that u−1 = u/(u · u) = u, you see that this reverses the u-
component of x. It can therefore be interpreted geometrically as the reflec-
tion of x in the plane of which u is the normal vector. Then the geometrical
significance of writing a general versor as the product of such operations
is that any orthogonal transformation can be written as multiple planar
reflections.
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4. Proper orthogonal transformations are represented by versors of even par-
ity, improper orthogonal transformations by versors of odd parity.
This can be derived by defining the determinant of a linear transformation
as the change of scale of the pseudoscalar (which is the highest order blade)
of the algebra. Every vector x of the space is in the subspace spanned
by the pseudoscalar In, and this can be shown to be equivalent to the
commutation statement x In = (−1)n+1In x. Then transforming In by a
versor V composed of k vector factors gives: (−1)nk V In V −1 = (−1)kIn,
so that the determinant of this orthogonal transformation equals (−1)k,
and the result follows.

5. Unit versors are the exponentials of bivectors (i.e., general linear elements
of grade 2). This is not quite true in general (see [10], [3]) , but the
mathematical subtleties do not occur in the spaces we will encounter in
this chapter (which have a Euclidean metric or a Minkowski metric, and
are of sufficiently high dimension). The fact that the bivectors form a
linear space makes this logarithmic representation of operators attractive
for interpolation and estimation.

21.3 The Conformal Model of Euclidean Geometry

We now move from the general properties of geometric algebras to a specific
model, suitable for computations in Euclidean geometry.

21.3.1 Specification

Euclidean motions on points in an n-dimensional space E
n have two important

properties:

• They preserve Euclidean distances between points.
• They preserve the point at infinity.

Both these properties of the motions should be built into their representation,
and into the representation of elements they act on. The conformal model
does this by selecting a specific representational space of n + 2 dimensions,
and relating its vectors and metric to Euclidean geometry.

1. The weighted points of n-dimensional Euclidean space are represented in
an (n + 2)-dimensional representation space as vectors.

2. The point at infinity is represented by a special vector ∞ in this represen-
tational space.

3. This inner product of the representational space is chosen to represent the
squared Euclidean distance by setting:

p · q
(−∞ · p) (−∞ · q) = − 1

2 d
2
E(p, q)
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Here −∞ · p is the weight of the point represented by the vector p, for
a normalized point this equals 1. The scaling ensures that Euclidean dis-
tance is a geometrical property defined among normalized points.

4. The versors of the geometric algebra of the representational space repre-
sent orthogonal transformations of that space. These preserve the inner
product, and therefore Euclidean distances in E

n; therefore they can rep-
resent Euclidean motions in E

n. But they also need to preserve the point
at infinity. Algebraically, this implies that the unit vectors that can be
used as factors of the versors should satisfy: ∞ = −n∞n−1, and there-
fore ∞ · n = 0. The geometrical meaning is that Euclidean motions can
be represented as successive reflections in general planes.

21.3.2 The Vectors of the Conformal Model

The vectors of the representational space that represent points are somewhat
unusual: they square to zero, which makes them null vectors. This is clear
from the relationship between the Euclidean metric and the inner product: a
Euclidean point should have distance zero to itself. The vector ∞ representing
the point at infinity is also a null vector. The existence of null vectors implies
that the representational space is not a Euclidean space; instead, it is an
(n + 2)-dimensional Minkowski space, denoted R

n+1,1. One can define an
orthonormal basis for it with (n + 1) basis vectors squaring to +1, and one
basis vector squaring to −1.

Being a vector space, the representational space also contains all linear
combinations of null vectors. Vectors of the form c − 1

2ρ
2∞, with c a null

vector, are of specific interest. Let us “probe” them with a unit point, to see
what they dually represent, i.e. let us solve x ·(c− 1

2ρ
2∞) = 0 for a null vector

x. The equation can be rewritten as d2
E(x, c) = ρ2. This is the equation for

x to lie on a sphere, so the vector σ = c − 1
2ρ

2∞ is the dual representation
of that sphere. The vector σ is not a null vector: σ2 = ρ2, as you may verify.
Imaginary dual spheres are represented for ρ2 < 0. A point is then a dual
sphere of zero radius.

The (n + 2)-dimensional representational space also contains purely
Euclidean vectors, for the n-dimensional Euclidean space is a subspace of
the representational space. We will denote those purely Euclidean vectors
in bold font. Such a vector n dually represents a plane through the origin
(i.e., it is what we would classically call a normal vector). General planes
(not necessarily passing through the origin) are dually represented as the
difference of two normalized null vectors: the midplane between points a and
b satisfies dE(x, a) = dE(x, b), which gives x · a = x · b, so that x · (a− b) = 0
and therefore (a−b) dually represents the midplane. Note that ∞·(a−b) = 0,
so that such a plane indeed contains the point at infinity.
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21.3.3 Introducing a Basis

The operations of geometric algebra can be specified without reference to a
basis. Yet you may prefer to have a standard basis to see how a point is
represented explicitly, in order to understand how one might implement the
operations, and to relate the conformal model to more classical approaches.
This requires appointing an arbitrary point as the origin, and denoting lo-
cations by direction vectors relative to that. Let us denote the vector repre-
senting the arbitrary origin point by o, a basis for the Euclidean 3D direction
by {e1, e2, e3}, and of course we have the point at infinity denoted by the
vector ∞. An arbitrary vector of the representational space is a general linear
combination of these components, but a null vector representing a point at
location x should have the specific form:

x = α (o + x + 1
2 x2 ∞). (21.1)

Please verify that x2 = 0.
In this expression, the purely Euclidean vector x is the location of the point

x relative to o, and the scalar constant α is its weight. The point x at location
ξ1e1 + ξ2e2 + ξ3e3 therefore has the coordinates

(
α, α ξ1, α ξ2, α ξ3,

1
2α(ξ2

1 +
ξ2
2 + ξ2

3)
)

on the basis {o, e1, e2, e3,∞}. The first four components are rem-
iniscent of the usual homogeneous coordinates, where an extra o-dimension
is added to n-dimensional space to represent the point at the origin. The
extra ∞-dimension of the conformal model provides the basis vectors have
a very specific inner product, defining the metric through the inner product
relationships in the following table:

o e1 e2 e3 ∞
o 0 0 0 0 -1
e1 0 1 0 0 0
e2 0 0 1 0 0
e3 0 0 0 1 0
∞ -1 0 0 0 0

Let us verify that the inner product of two normalized points indeed gives
their squared Euclidean distance:

p · q = (o + p + 1
2p

2∞) · (o + q + 1
2q

2∞)

= − 1
2q

2 + p · q − 1
2p

2

= − 1
2 (q − p)2.

This shows explicitly how the conformal model works, and why the strange
metric is essential. That metric gives the conformal model quantitative prop-
erties that the homogeneous coordinates lack, and that are precisely right to
permit its encoding Euclidean motions as orthogonal transformations, with
manifest structure preservation when represented in versor form.
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21.3.4 Elementary Euclidean Objects as Blades

In the conformal model, where Euclidean points are represented as represen-
tative vectors, the outer product has a pleasing semantics. We only state the
results; a detailed derivation may be found in [3].

1. A line is constructed from two points represented by vectors a and b as
the 3-blade L = a ∧ b ∧ ∞. This represents the line directly, in the sense
that solving the equation x ∧ L = 0 for vectors x representing Euclidean
points results exactly in points on the line through a and b. (Note that
the properties of associativity and anti-symmetry imply that the point
∞ is on the line: it passes through infinity.) Yet L has more properties
than merely being a point set: it represents a weighted line, with a specific
orientation. This permits encoding its velocity or density, and other such
physical properties, in its algebraic structure. Alternatively, a line through
a with a direction vector u may be encoded as L = a ∧ u ∧ ∞, which is
essentially a plunge into the dual plane u.

2. A plane is constructed from three points a, b and c as the 4-blade Π =
a∧ b∧c∧∞. Besides its spatial attitude and location, such a plane has an
orientation, and a weight that can be used to denote density. Alternatively,
a plane in dual representation can be constructed from a normal vector n
and a point p on it as π = p!(n ∧ ∞).

3. A flat point is a 2-blade of the form a ∧ ∞. It is the kind of element in
common between a line and a plane.

4. A circle through the points a, b, c is represented by the 3-blade K = a∧b∧c.
This circle is oriented, and has a weight measure proportional to the area
of the triangle formed by a, b, c. In the conformal model, a line is merely
a circle that passes through infinity.

5. A sphere through the points a, b, c, d is represented by the 4-blade Σ = a∧
b∧c∧d. This sphere is oriented, and has a weight measure proportional to
the volume of the tetrahedron formed by a, b, c, d. Alternatively, a sphere
in dual representation can be constructed from its center q and a point p
on it as σ = p!(q ∧ ∞).

6. A point pair is a 2-blade a ∧ b. Just like a circle is “a sphere on a plane”,
a point pair is “a sphere on a line”.

You should realize that all of these are basic elements of computation, and
that they can be combined using the products of geometric algebra to produce
new elements. For instance, an alternative characterization of the circle is by
writing its dual representation as κ = σ∧π, where σ is a dual sphere and π is
a dual plane. Or one could specify the circle that orthogonally intersects three
dual spheres σ1, σ2, σ3 as K = σ3 ∧ σ2 ∧ σ1, a plunge. Even tangent elements
can be made in this way: the intersection of two touching circles results in a
blade that represents their common tangent vector. A direct representation
of the tangent vector at a point a in direction n is a!(a ∧ n ∧ ∞). For more
details, see [3].
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21.4 Euclidean Motions as Versors

The planar reflection is the basic Euclidean transformation, all others can
be constructed as multiple planar reflections. A translation can be made as
a reflection in two parallel planes, a rotation by a reflection in two inter-
secting planes (where the intersection line is the rotation axis). You see that
proper Euclidean motions are represented by an even number of reflections,
and therefore by a versor consisting of an even number of vector terms (ap-
propriately called an even versor). Improper motions involve odd versors. All
preserve Euclidean distances, though not necessarily handedness.

21.4.1 Planar Reflections

Reflections in general planes are the geometrical basis of our representation
of general motions. We therefore need to find out how to represent a general
plane. To be specific, let us introduce an origin o, and aim to encode the
plane with unit normal vector n at distance δ from this origin. In the usual
Euclidean geometry the location x of a general point on this plane would
satisfy the “Hesse normal equation”

x · n = δ.

Using the conformal model, this can be written in terms of the conformal
point x as the homogeneous equation:

x · (n + δ∞) = 0.

Therefore the vector π = α(n + δ∞), or any multiple of it, is the dual rep-
resentation π of the plane Π. The Euclidean parameters of the plane can be
retrieved from its dual representation π by the equations:

α δ = −o · π, and αn = o!(π ∧ ∞).

(The latter requires a property of the contraction ! which reads in general
a!(b ∧ c) = (a · b) c− b (a · c), see [3].) If required, the scaling factor α can be
eliminated by the demand for unit norm on n. These equations are algebraic
expressions that amount to straightforward coordinate manipulation in an
implementation.

The sandwiching product with π produces a reflection of a point x. This
may be verified by using the commutation properties of the various vector
components involved. Let us work out the action on the components (using a
unit plane since α is eliminated in the sandwiching anyway):

−π o π−1 = −(n + δ∞) o (n + δ∞)
= o− δn (∞ o + o∞) − δ2 ∞ o∞
= o + 2δ n + 2δ2 ∞
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−π xπ−1 = −(n + δ∞)x (n + δ∞)
= −nxn − 2δ∞ (x · n)
= x − 2(n · x)n − 2δ∞ (x · n)

−π∞π−1 = −(n + δ∞)∞(n + δ∞) = ∞.

The invariance of ∞ confirms that planar reflection is a Euclidean transfor-
mation. Putting these elements together, we find that the result is the vector
representing the point at location:

x + 2(δ − n · x)n,

which is the correct answer for a reflection in the dual plane π. If you follow
the computations above in detail, you find that the geometry of reflection
is completely represented by the algebra of commutation relationships. But
you would not compute all this in practice; the above is just a proof of the
correctness of the simple conformal model statement

x �→ − π xπ−1

to specify this operation in a program based on the conformal model. You
learn to read this as “the dual plane π acting on the point x”. Because of the
structure preservation of the outer product, the equation is simply extended
to the reflection formula for a k-blade X (which can represent a line, plane,
circle, and so on):

X �→ (−1)k πX π−1.

That is how easy general planar reflections are in the conformal model.

21.4.2 Translations

A translation over t can be made by a successive reflection in two planes π1

and π2 with well chosen normal (parallel to t) and separation (proportional
to ‖t‖/2). That successive reflection leads to an element that is the composite
operation. The composition product for the versors π1 and π2 is the geometric
product π2 π1 (in that order!):

(−π2 (−π1 xπ1
−1)π2

−1) = (π2 π1)x (π2 π1)
−1

.

Therefore, the translation versor over t can be made by any multiple of:

(t + 1
2t

2∞) t = t2(1 − 1
2t∞).

We define the translation versor

Tt ≡ (1 − t∞/2) = e−t∞/2.
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The final expression in terms of an exponential prepares later usage; it is a bit
of overkill here, since the power series defining the exponential has all terms
beyond the second equal to zero (because ∞ is a null vector).

Applying this translation versor Tt to the point at the (arbitrary) origin
o gives a familiar result:

Tt o T
−1
t = (1 − t∞/2) o (1 + t∞/2)

= o− t∞ o/2 + o t∞/2 − t∞ o t∞/4
= o + t + 1

2t
2 ∞,

in agreement with our representation (21.1) of a point at location t relative
to the origin.

21.4.3 Rotations at the Origin

A rotation over φ around an axis with direction a through the origin can be
made by reflection in two planes containing the normalized axis L = o∧a∧∞,
and making an angle φ/2 with each other, see Figure 21.1. Such planes through
the origin can dually represented by purely Euclidean unit vectors u and v,
so the total rotation versor is vu. We need to establish the relationship to
the desired rotation parameters.

The 2-blade u ∧ v is the purely Euclidean attitude of the rotation plane,
and as a dual meet is proportional to the dual axis L∗ by u∧v = − sin(φ/2)L∗.
We can use this 2-blade to encode the rotation, for the geometric product of
the two unit vectors v and u can be written as:

Fig. 21.1. A rotation over φ as a double reflection in the planes with normals u
and v, making a relative angle φ/2. The rotation plane is the common plane of u
and v; the rotation axis is the dual of the plane.
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vu = v · u + v ∧ u = cos(φ/2) + L∗ sin(φ/2)

For n = 3, the square (L∗)2 is evaluated as:

(L∗)2 = LI−1
n+2 LI−1

n+2 = (−1)grade(L)(n+3)(I−1
n+2)

2L2 = −L2 = −1.

Therefore L∗ is a normalized 3-component element (parametrized by the axis
vector a), squaring to −1. Algebraically, this makes the element vu isomor-
phic to a unit quaternion representation, even though it is completely ex-
pressed in terms of real geometric elements. Because of the negative square of
L∗, we can write this rotation operator in terms of an exponential (defined in
terms of the usual power series):

vu = eL∗φ/2.

The knowledge of the unit rotation axis L and the rotation angle φ therefore
immediately produces the rotation operator in versor form.

21.4.4 General Rotations

A general rotation takes place around an arbitrary axis. We can make such a
rotation by first performing an inverse translation on the rotation argument,
then rotating around the origin, and moving the result back to the original lo-
cation of the rotation axis. This produces the operator Tt exp(L∗φ/2)T−1

t . By
developing the exponent in this expression in a power series, and rearranging,
one can simply demonstrate that this is equivalent to exp(Tt(L∗φ/2)T−1

t ), the
exponential of the translated dual axis with its rotation angle. This is effec-
tively due to the structure preserving properties of the versor representation.
As a consequence, a general unit axis L and angle φ can be used to produce
the corresponding rotation operator immediately:

3D rotation around line L over angle φ: R = eL∗φ/2.

That capability of the conformal model greatly extends the geometric power
of quaternion-like expressions and techniques.

21.4.5 General Rigid Body Motions

When we focus on the proper Euclidean motions, we can represent those by
an even number of reflections and therefore represent them algebraically by an
even number of the unit vectors representing Euclidean planes. These are op-
erators with useful properties of their own, and they are called rotors.1 Rotors
1 If you use all available vectors in the conformal model as versors, you would also

get reflections in spheres, and reflections in imaginary spheres. Not all those are
rotors, which should moreover have their inverse equal to their reverse, see [3]
or [10] for details.
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can be used to transform general elements X through X �→ V XV −1. They
preserve handedness, and are therefore abstract rotations in the representa-
tive space. But more importantly, these transformations are “continuously
connected to the identity”, which means that we can do them in arbitrarily
small amounts. This makes them true motions, for we can do them “a little
at a time”.

Their exponential representation shows this most clearly. By choosing a
small bivector δB for the exponent, we compute:

X �→ e−δB/2 X eδB/2 ≈ (1 − δB/2)X(1 + δB/2) = X + 1
2δ (X B −BX),

which is a small additive disturbance of X. The second term involves the
commutator product of X with the bivector B, which can be shown to be
grade-preserving. (It also explains why small motions form a Lie algebra,
see [2]). We can even interpolate motions represented exponentially, for by
dividing the exponent we obtain the Nth root of a rotor V as r = V 1/N . Then
the total motion generated by V could be done in N steps by performing r a
total of N times.

So we have a desire to express a rotor as the exponential of a bivector. In
the Euclidean and Minkowski spaces we consider in this chapter, that can be
done for almost all rotors [10]. (We will comment on the single geometrically
relevant exception below.)

21.4.6 Screws

When we treated the translations and rotations, we showed that the rotors
of each can be represented as the exponential of a 2-blade, a special case of
a bivector. When the motions are composed, their rotors multiply. The result
can always still be written as the exponential of a bivector, but this bivector
is not simply found as the sum of the 2-blades of the contributing rotors:

eB eA �= eA+B in general.

The reason is simply that the right-hand side is symmetric in A and B,
whereas the left-hand side is not. However, it can be shown that we are in-
deed allowed to add the exponents if the two rotors commute, which happens
precisely when their bivectors commute.

There is a way of constructing general rigid body motions with commuting
translations and rotations. Geometrically, one follows a rotation around a
certain axis L with a translation of w along that axis. The bivectors of the
corresponding rotors are −w∞/2 and L∗φ/2. If rotors are to commute, so
should their bivectors, and we must have (w∞)L∗ = L∗ (w∞). That implies
w ∧L = 0, confirming that w is parallel to the axis. With this condition, the
full rigid body motion rotor is:

e−w∞/2 eL∗φ/2 = e−w∞/2+L∗φ/2.
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Fig. 21.2. A screw motion and its parameters Iφ (the rotation plane and angle), v
(the location of the screw axis in the plane) and w (the translation along the screw
axis).

If we divide the exponent by N , we have the rotor r for the Nth root of the
motion. The total motion can be performed in small steps of this rotor r,
and they trace out a screw, see Figure 21.2. That is why this is called the
screw representation of a rigid body motion. It is important because of its
simple form: it relates a motion versor to a characterizing bivector through
its exponential. This can be reversed: the bivector of the screw is then the
logarithm of the rigid body motion.

21.4.7 General Rigid Body Motions as Screws

The screw characterization of a rigid body motion has been known since the
19th century, and survives as a specialized representation for time-critical
robotics dynamics algorithms. In computer vision and computer graphics, it
is more common to have a general motion given as “a rotation in the origin
followed by a translation”. Perhaps the main reason is that each of those
operations is clearly recognizable in the homogeneous coordinate matrix [[M]]
that represents such a rigid body motion (e.g., in OpenGL):

[[M]] =
[[

[[R]] [[t]]
[[0]]T 1

]]
(21.2)

Though this representation is straightforward for the composition of motions,
it is awkward in almost all other uses. The main reason is that it represents
the motion as a discrete pose transformation rather than in a continuous
parametrization that can be naturally interpolated.
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To comply with this common usage, let us suppose we have been given the
rotation plane and angle Iφ, and a translation t, together specifying the rigid
body motion versor as:

V = Tt RIφ = e−t∞/2e−Iφ/2.

If we want to interpolate this motion, we need to write it as a pure exponential,
so that we can interpolate its bivector logarithm. Since the translation rotor
and rotation rotor do not commute, this is not trivial. We take the detour of
rewriting the versor in its screw representation, to revert to the results of the
previous section. Our technique of rewriting follows [7].

The rotation of the screw representing this motion will be around an axis
perpendicular to the I-plane, but translated to a location v yet to be deter-
mined. We may of course take v to be in the I-plane, without loss of generality:
so we demand v ∧ I = 0, which implies v I = −Iv. The translation w of the
screw needs to be perpendicular to the I-plane, so that wI = Iw. Under
these conditions, we need to solve for v and w in:

Tt RIφ = Tw

(
Tv RIφT−v

)
. (21.3)

Since the only translation perpendicular to I is performed by w, this must be
the component of the translation vector t perpendicular to I. This gives

w = (t ∧ I)/I.

That leaves the other component of the translation u ≡ (t!I)/I, which is
the projection onto I. Multiplying both sides of Equation (21.3) by T−w, we
should solve the equation

Tu RIφ = Tv RIφ T−v, (21.4)

with all quantities residing in the I-plane. We can swap the rightmost trans-
lation with RIφ, according to the following swapping rule

RIφ T−v = RIφ (1 + v∞/2) = (1 + RIφvR−1
Iφ ∞/2)RIφ = T−RIφvR−1

Iφ
RIφ.

We also observe that since v is a vector in the plane of RIφ, we can represent
the versor product with RIφ in the one-sided form:

RIφ vR−1
Iφ = R2

Iφ v.

Collating these results, Equation (21.4) can be rewritten as

Tu RIφ = T(1−R2
Iφ

)v RIφ.

When R2
Iφ is not equal to 1, the solution for v is therefore

v = (1 −R2
Iφ)

−1
u = (1 −R2

Iφ)
−1

(t!I)/I. (21.5)
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The feasibility of this solution proves the possibility of the screw decompo-
sition of the rigid body motion, and also computes its parameters in terms
of t and I. But we may only have been given the rigid body motion versor
V , so we need to show that t and I can be extracted from that. This is done
through the equations:

RIφ = −o!(V ∞), t = −2 (o!V )R−1
Iφ ,

and realizing that I is just the normalized grade-2 part of RIφ.

21.4.8 Logarithm of a Rigid Body Motion

Given the versor of a rigid body motion, the above indicates how we should
find its bivector logarithm: just compute the corresponding screw parameters
from the translational and rotational parts. When doing this, one has the need
for the logarithm of a pure rotation around the origin, which generally has
the form:

RIφ = e−φ/2 = cos(φ/2) − I sin(φ//2).

This is easy enough: I is obtained from normalizing the ratio of the grade-2
and grade-0 parts, and the angle φ by the atan2 function (which is robust
against the scalar part being zero). When the grade-2 part is zero, one needs
to be more careful. In that case, RIφ must be equal to ±1. Then R2

Iφ = 1,
which is precisely the exceptional condition for solving Equation (21.5). Even
though we cannot continue the standard computation, a screw decomposition
still exists.

• The case RIφ = 1 is the identity rotation. The rigid body motion is then a
pure translation, and has the simpler form exp(−t∞/2) = 1−t∞/2 which
presents no difficulties for the logarithm.

• The case RIφ = −1 is a rotor with a rotation angle φ = 2π, but in an
undetermined plane. Such a rotation over 2π is the identity rotation on a
vector, but the rotor is nevertheless useful in the representation of rotations
of composite elements.2 We can in principle choose any rotation plane J
to write this rotor of −1 in exponential form as the rotor e−Jπ, but in
the screw representation we should make sure that J is perpendicular to t
(for we must preserve the commutativity of the rotational and translational
rotors permitting the addition of their bivectors). In spaces with 3 or more
dimensions, we can simply choose J proportional to t∗. But in 2-D this
is impossible, and therefore we cannot make a screw representation of a
rigid body motion with rotational rotor −1 in 2-D. For this one exceptional
situation a logarithm does not exist, and interpolation is impossible.

2 Remember the “plate trick”: rotating a horizontally held plate in your hand leads
to an elbow-up position after a rotation of 2π, only to revert to the elbow-down
starting position after a 4π rotation. The parity of the elbow is encoded in the
sign of the rotor corresponding to the plate rotation.
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Close to these exceptional situations, the determination of the rotation plane
I is still possible, but numerically unstable. Around the identity, this is tem-
pered in all outcomes by the near-zero value of φ; around −1, the numerical
instability cannot be resolved.

Combining these results and those of the previous section gives the follow-
ing pseudocode for the logarithm of a rigid body motion in 3-D.

log(V ) {
R = −o!(V∞)
t = −2 (o!V )/R
if (‖〈R〉2‖ < ε)

if (R > 0) // the case R = 1
log = −t∞/2

else // the case R = −1
J = t∗/‖t∗‖
log = −t∞/2 − Jπ

endif
else // the regular case

I = 〈R〉2/‖〈R〉2‖
φ = −2 atan2

(
‖〈R〉2‖, 〈R〉0

)
log =

(
− (t ∧ I)/I + 1/(1 −R2) t!Iφ

)
∞/2 − Iφ/2

endif
}

In this pseudocode, the notation 〈R〉k denotes taking the kth grade part of
the versor R. The variable ε is determined by demands on numerical stability.
One may improve subsequent numerics by making sure to return a bivector
through taking the grade-2 part of the log.

We should mention that the classical homogeneous coordinates matrix
representation of rigid body motion given in Equation (21.2) also has a closed
form logarithm; it may for example be found in [9].

21.5 Applications of the Rigid Body Motion Logarithm

21.5.1 Interpolation of a Rigid Body Motions

According to Chasles’ theorem, any rigid body motion can be viewed as a
screw motion. It is then natural to interpolate the original motion by per-
forming this screw gradually.

Figure 21.3 shows how simple this has become in the conformal model of
geometric algebra: the ratio of two unit lines L2 and L1 defines the square of
the versor that transforms one into the other. Performing this motion in N
steps implies using the versor

V 1/N = elog(L2/L1)/(2N).
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Fig. 21.3. The interpolation and extrapolation of the rigid body motion trans-
forming a spatial line L1 into a line L2 is done by repeated application of the versor
exp
(
log(L2/L1)/(2N)

)
. The screw nature of the motion is apparent.

Applying this versor repeatedly to the line L1 gives the figure. It interpolates
the transformation of L1 into L2, and extrapolates naturally. Note how all
can be defined completely, and simply, in terms of the geometric elements
involved. You do not need coordinates to specify how things move around!
The same rotor V 1/N can of course be applied to any element that should
move similarly to L1.

21.5.2 Interpolation of a Sequence of Rigid Body Motions

Since the resulting logarithms are bivectors, they can be interpolated natu-
rally themselves. Any linear technique from a linear space, such as the usual
point based splines can be used to produce sensible results, for the exponential
of any of the interpolated bivectors gives a valid intermediate pose transfor-
mation. As an example, Figure 21.4 shows a cardinal spline interpolation of
the bivectors characterizing 4 frames. These cardinal splines are independent
of the parametrization of the bivectors since they work “per dimension”.

It is truly the bivector representation of the intermediate poses that is
being interpolated, and this allows for interesting phenomena. In Figure 21.5,
the two solidly drawn frames look like being related by a simple translation,
but the bivectors of their versors are actually 0 and e1 ∧e2 π−e3 ∧∞. There-
fore, the second frame is both translated over e3 and rotated over 2π around
the e3 axis. This does not show in their rendering, but when the versors are
interpolated the extra twist is properly interpolated. Clearly, other multiples
of 2π rotation angles in other planes would be equally feasible. Figure 21.5(b)
shows the interpolation between two seemingly identical frames.
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Fig. 21.4. Cardinal spline interpolation of rigid body motion. A sequence of four
frame poses is given, drawn solid. A cardinal spline with tension 0.75 is fitted through
the bivectors of their versors, and the exponentials of the results are used as interme-
diate poses. The frames are drawn by performing the versors on the tangent vectors
o ∧ ei of the standard frame at the origin.

(a) (b)

Fig. 21.5. Extra twists can appear between seemingly purely translated frames,
depending on the actual values of their bivectors. This can be considered either a
feature or a bug, depending on the user. Figure 21.5(a) shows the interpolation of the
versors with bivectors 0 and e1∧e2 π−e3∧∞. Figure (b) shows the interpolation of
versors with bivectors 0 and e1 ∧e3 π−e3 ∧∞. The latter is the versor of a rotation
of 2π around the e3 axis at 2/π e1, as the interpolation between the apparently
identical initial and final frames shows.

On the one hand, this can be used to compactly encode such rotations; on
the other hand, if one wants to interpolate measured data, it shows that one
should take care in the assignment of bivectors to frames, making sure that
they belong to the same turn of the screw if this phenomenon of extra twists
is to be avoided.

The resulting curves, though valid as motions, are not designed to minimize
physical quantities like overall torque, or some trade-off between rotational
and translational energy (for which one would need to know mass and inertia).
Such measures should first be related to the bivector characterization, and
since a formulation of classical physics has been given in geometric algebra
[2, 5], this should be relatively easy.



21 Rigid Body Motions in the Conformal Model of Geometric Algebra 527

More seriously, the simple scheme of interpolating the bivectors leads to
a motion that is not covariant under a change of the interpolants: moving
the target frames and then interpolating is not the same as moving the inter-
polated sequence. The fundamental mathematical reason is that the group of
rigid body motions SE(3) cannot be endowed with a “bi-invariant Riemannian
metric” [9]. This means that the concept of straight line (or geodesic) becomes
more involved, and that interpolations based on concepts of minimization of
length (De Casteljau) and/or energy (splines) are compromised: they can-
not be covariant simultaneously under changes of body frame and of world
frame. Two practical solutions to this dilemma are compared in [1], using the
classical homogeneous coordinate representation. We should study whether
the more direct bivector representation could suggest other methods (but the
fundamental mathematical impossibility will of course remain).

21.5.3 Combination of Estimates

In applications in computer vision and robotics, one often is able to estimate a
pose in various ways. The problem then arises how to combine such estimates.
The linearity of the bivector representation is very helpful here. For example, if
the poses are known to have a normal distribution in their bivector parameters,
the best estimate of the pose versor is the exponential of the average bivector.
This is illustrated in Figure 21.6. Here it is obviously required that the bivector
characterizations of the frames do belong to the same turn (2π-interval) of the
screw.

However, the mere averaging of bivectors combines their rotational and
translational part in equal measure, as it were comparing angles and distances
by counting the angles as the corresponding arc lengths on the unit circle
(since they are radians). In applications, one typically has different accuracies
for these angles and positions, or even for certain orientations or directions
(as for instance in stereo vision, where the radial distance from the observer
is less accurate than the tangential distances).

Fig. 21.6. From ten Gaussian distributed estimated poses of a frame, the “best”
frame (denoted solidly) is estimated as the exponent of the average of the bivectors
of their versors.
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An advantage of the linearity of the bivector space is that it permits one
to incorporate such differences in the second order statistics in a simple and
structural manner, using covariance ellipsoids. This also permits a direct bor-
rowing of techniques like time-dependent Kalman filtering, and classification
and segmentation of poses using Mahalanobis distances. The first applications
of such conformal estimation methods are beginning to appear (see e.g. [11]).

21.6 Conclusion

Our goal was to demonstrate the geometrical coherence of the conformal model
for the treatment of Euclidean geometry. We focused on the representation and
interpolation of the rigid body motions, and hope to have convinced the reader
that this unfamiliar representation deserves to be explored for applications in
which those are central. The advantage of the completely linear representation
by bivectors permits one to adapt familiar techniques from the positional
interpolation and linear estimation without structural change. The fact that
the Euclidean properties are baked into the algebra at the fundamental level
of its inner product means that all computations will result in directly usable
elements, so that no computational effort needs to be wasted in projecting
back to the motion manifold, as happens so often in techniques based on
approximate linearizations of homogeneous coordinate matrices. This could
lead to faster motion processing, since it has been shown that by employing
the proper implementational techniques, computations in the conformal model
can be as cheap as those using traditional homogeneous coordinates [2]. The
field is beginning to take off, and we hope to report on more results soon.
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Summary. The interesting combination of chapters in this book gives a nice
overview of the importance of the analysis of human motion in three different sci-
entific disciplines, computer vision, biomechanics, and computer graphics. In the
computer vision field the main goal has been to develop robust and efficient tech-
niques for capturing and measuring human motion. Researchers from biomechanics,
on the other hand, try to capitalize on such measurement methods to analyze the
characteristics of human motion. In contrast, the focus of computer graphics re-
search has been to realistically animate and render moving humans. In this chapter,
we will outline that a joint solution to the acquisition, the reconstruction, and the
rendering problem paves the trail for video-based capturing and rendering of people.
We present a model-based system to create realistic 3D videos of human actors that
puts this idea into practice. Our method enables us to capture human actors with
multiple video cameras and to render their performances in real-time from arbitrary
novel viewpoints and under arbitrary novel lighting conditions.

22.1 Introduction

In recent years, an increasing research interest in the field of 3D Video Process-
ing has been observed. This young and challenging discipline lives on the
boundary between computer graphics and computer vision. The goal of 3D
Video Processing is the extraction of spatio-temporal models of dynamic
scenes from multiple 2D video streams. These scene models comprise of de-
scriptions of the scene’s shape, the scene’s appearance, as well as the scene’s
motion. Having these dynamic representations at hand, one can display the
captured real world events from novel synthetic camera perspectives. In order
to put this idea into practice, algorithmic solutions to three major problems
have to be found: the problem of multi-view acquisition, the problem of scene
reconstruction from image data, and the problem of scene display from novel
viewpoints. While the first two problems have been widely investigated in
computer vision, the third question is a core problem in computer graphics.
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Human actors are presumably the most important elements of many real-
world scenes. Unfortunately, it is well known to researchers in computer graph-
ics and computer vision that both the analysis of shape and motion of humans
from video, as well as their convincing graphical rendition are very challeng-
ing problems. To tackle the difficulties of the involved inverse problems, we
propose in this chapter a model-based approach to capture and render free-
viewpoint videos of human actors. Human performances are recorded with
a handful of synchronized video cameras. A template model is deformed to
match the shape and proportions of the captured human actor and it is made
to follow the motion of the person by means of a marker-free optical motion
capture approach. In a first algorithmic variant, the human performances can
be rendered in real-time from arbitrary synthetic viewpoints. Time-varying
surface appearance is generated by means of a dynamic multi-view texturing
from the input video streams. In a second variant of the method, we do not
only capture time-varying surface appearance but reconstruct sophisticated
dynamic surface reflectance properties. This enables real-time free-viewpoint
video rendering not only from novel viewpoints but also under novel virtual
lighting conditions. Finally, we also give an outlook on future directions in
model-based free-viewpoint video of human actors, like on how to incorpo-
rate high-quality laser-scanned shape priors into the overall workflow. This
chapter is a summary of several algorithms that we have developed in the last
couple of years and methods that we continue to work on. It also provides a
comprehensive set of references to other papers where the individual method
are described in greater detail than in this overview chapter.

The chapter is organized as follows. We begin with a review of important
related work in Section 22.2. Section 22.3 gives details about the multi-view
video studio, the camera system and the lighting setup that we employ for
acquisition. Our template body model is described in Section 22.4. A cen-
tral ingredient of all our free-viewpoint video methods, the silhouette-based
analysis-through-synthesis method, is described in Section 22.5. We employ
this algorithm to adapt the shape of our template model such that it matches
the subject currently recorded, and also employ it to capture the motion of the
human actor. In Section 22.6 we describe how to combine the silhouette-
based analysis-through-synthesis method with a dynamic texture-generation
approach to produce free-viewpoint videos of human actors. We also present
and discuss visual results obtained with this method. Our extension of the
algorithm which enables us to generate dynamically textured free-viewpoint
videos is described in Section 22.7. We show several example sequences that
we have captured and rendered under different virtual lighting conditions.
We end the chapter with an outlook to future directions in model-based free-
viewpoint video that we have started to work on in Section 22.8 and conclude
in Section 22.9.
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22.2 Related Work

Since the work presented in this chapter jointly solves a variety of algorith-
mic subproblems, we can capitalize on a huge body of previous work in the
fields human motion capture, image-based rendering, 3D video image-based
reflectance estimation, and mesh-based animation processing.

For a detailed review on human motion capture, we would like to refer
the reader to the Chapters 12 and 13, and constrain our review to relevant
research from the other fields.

22.2.1 Free-Viewpoint Video

Research in free-viewpoint video aims at developing methods for photo-
realistic, real-time rendering of previously captured real-world scenes. The
goal is to give the user the freedom to interactively navigate his or her view-
point freely through the rendered scene. Early research that paved the way
for free-viewpoint video was presented in the field of image-based rendering
(IBR). Shape-from-silhouette methods reconstruct geometry models of a scene
from multi-view silhouette images or video streams. Examples are image-
based [28, 52] or polyhedral visual hull methods [27], as well as approaches
performing point-based reconstruction [17]. The combination of stereo recon-
struction with visual hull rendering leads to a more faithful reconstruction of
surface concavities [26]. Stereo methods have also been applied to reconstruct
and render dynamic scenes [21, 58], some of them employing active illumina-
tion [50]. On the other hand, light field rendering [25] is employed in the
3D TV system [30] to enable simultaneous scene acquisition and rendering in
real-time.

In contrast, we employ a complete parameterized geometry model to pur-
sue a model-based approach towards free-viewpoint video [6,43–46]. Through
commitment to an adaptable body model whose shape is made consistent
with the actor in multiple video streams, we can capture a human’s motion
and his dynamic surface texture [7]. We can also apply our method to capture
personalized human avatars [1].

IBR methods can visualize a recorded scene only for the same illumination
conditions that it was captured in. For correct relighting, it is inevitable to
recover complete surface reflectance characteristics as well.

22.2.2 Image-based Reflectance Estimation

The estimation of reflection properties from still images has been addressed in
many different ways. Typically, a single point light source is used to illuminate
an object of known 3D geometry consisting of only one material. One common
approach is to take HDR (High Dynamic Range) images of a curved object,
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yielding a different incident and outgoing directions per pixel and thus cap-
turing a vast number of reflectance samples in parallel. Often, the parameters
of an analytic BRDF (Bidirectional Reflectance Distribution Function) model
are fitted to the measured data [24, 37] or a data-driven model is used [29].
Zickler et al. [57] proposed a scattered data interpolation method to recon-
struct a reflectance model. Reflectance measurements of scenes with more
complex incident illumination can be derived by either a full-blown inverse
global illumination approach [4, 15, 53] or by representing the incident light
field as an environment map and solving for the direct illumination component
only [31, 35, 54]. In a method that we will briefly outline in Section 22.7, we
approximate the incident illumination by multiple point light sources and es-
timate BRDF model parameters taking only direct illumination into account.

Reflection properties together with measured photometric data can also
be used to derive geometric information of the original object [56]. Rushmeier
et al. [36] estimate diffuse albedo (i.e., diffuse reflectance) and normal maps
from photographs with varied incident light directions [3, 36]. A linear light
source is employed by Gardner et al. [13] to estimate BRDF properties and
surface normal. In [14,16], reflectance and shape of static scenes are simulta-
neously refined using a single light source in each photograph.

Instead of explicitly reconstructing a mathematical reflectance model, it
has also been tried to take an image-based approach to relighting. In [18]
a method to generate animatable and relightable face models from images
taken with a special light stage is described. Wenger et al. [51] extend the
light stage device such that it enables capturing of dynamic reflectance fields.
Their results are impressive, however it is not possible to change the viewpoint
in the scene. Einarsson et al. [12] extends it further by using a large light stage,
a tread-mill where the person walks on, and light field rendering for display.
This way, human performances can be rendered from novel perspectives and
relit. Unfortunately the method can only handle periodic motion, such as
walking, and is only suitable for low frequency relighting. For our 3D video
scenario, we prefer a more compact scene description based on parametric
BRDFs that can be reconstructed in a fairly simple acquisition facility, that
allows for arbitrary viewpoint changes as well as high-frequency relighting.

Carceroni and Kutulakos [5] present a volumetric method for simultaneous
motion and reflectance capture for nonrigid objects [5]. They have shown nice
results for spatially confined 3D scenes where they used a coarse set of surfels
as shape primitives.

In Section 22.7, we briefly talk about an extension of our original model-
based free-viewpoint video pipeline that enables us to capture shape, motion
parameters and dynamic surface reflectance of the whole human body at high
accuracy [42, 48]. As input, we only expect a handful of synchronized video
streams showing arbitrary human motion. Our reconstructed dynamic scene
description enables us to render virtual people in real-time from arbitrary
viewpoints and under arbitrary lighting conditions.
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22.2.3 Mesh-based Deformation and Animation

In Section 22.8, we identify some of the conceptual restrictions that are
imposed by using an adaptable kinematic template model. Following these
insights, we propose a way to modify our framework to use more general
models, e.g., high-quality scanned geometry, for model-based free-viewpoint
video. The method we present couples our marker-less motion capture with a
mesh-based deformation scheme. To learn more about these mesh-deformation
schemes, we would like to suggest to the reader to look into the references in
the following paragraph. We have developed a novel simple and fast proce-
dure that overcomes many limitations of the traditional animation pipeline
by capitalizing on and extending ideas from mesh deformation.

A variety of concepts have been proposed in the literature to efficiently
and intuitively deform 3D triangle meshes. Among the most promising ap-
proaches have been algorithms that use differential coordinates, see [2,39] for
reviews on this subject. The potential of these methods for animation has
already been stated in previous publications, however, the focus always lay
on deformation transfer between moving meshes [55]. Using a complete set of
correspondences between different synthetic models, [40] enables transferring
the motion of one model to the other. Following a similar line of thinking,
[10,41] propose a mesh-based inverse kinematics framework based on pose ex-
amples with potential application to mesh animation. Recently, [38] presents a
multigrid technique for efficient deformation of large meshes and [20] presents
a framework for performing constrained mesh deformation using gradient do-
main techniques. Both methods are conceptually related to our algorithm and
could also be used for animating human models. However, none of the papers
provides a complete integration of the surface deformation approach with a
motion acquisition system, nor does any of them provide a comprehensive user
interface.

We developed a novel skeleton-less deformation method that allows us
to easily make a high-quality scan of a person move the same way as the
template model used for motion capture [9]. To this end, only a handful of
correspondences between the two models has to be specified once. Realistic
motion of the scan as well as nonrigid surface deformations are catered for
automatically.

22.3 Acquisition: A Studio for Multi-view
Video Recording

The input to our system are multiple synchronized video streams of a moving
person, so-called MVV sequences, that we capture in our free-viewpoint video
studio. The studio features a multi-camera system that enables us to capture
a volume of approximately 4 × 4 × 3 m with eight externally synchronized
video cameras [47]. The imaging sensors can be placed in arbitrary positions,
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but typically we resort to an approximately circular arrangement around the
center of the scene. Optionally, one of the cameras is placed in an overhead
position. Over time, we enhanced and upgraded the studio, such that we have
two 8-camera systems at our disposition. Camera system I, the older one of
the two setups, features 8 IEEE-1394 cameras which we run at 320x240 image
resolution and 15 fps. This setup has been used for our original work on non-
relightable 3D video, Section 22.6. Camera setup II, features 8 Imperx MDC
1004 video cameras providing 1004x1004 pixel frame resolution, 12-bit color
depth and a frame rate of 25 fps. Camera system II has been used in our
recent work on 3D Video relighting, Section 22.7.

Prior to recording, the cameras are calibrated, and inter-camera color con-
sistency is ensured by applying a color-space transformation to each video
stream. The lighting conditions in the studio are fully-controllable and the
scene background can optionally be draped with black molleton. We have a
set of different light setups at our disposition. While for the free-viewpoint
video with dynamics textures we prefer a diffuse illumination, our work
on relighting requires spot-light illumination. The specific requirements of
the lighting setup used for dynamic reflectance estimation are explained in
Section 22.7.1.

22.4 The Adaptable Human Body Model

While 3D object geometry can be represented in different ways, we employ a
triangle mesh representation because it offers a closed and detailed surface de-
scription, and, even more importantly, it can be rendered very fast on graphics
hardware. Since the model must be able to perform the same complex motion
as its real-world counterpart, it is composed of multiple rigid-body parts that
are linked by a hierarchical kinematic chain. The joints between segments are
suitably parameterized to reflect the object’s kinematic degrees of freedom.
Besides object pose, also the dimensions of the separate body parts must be
kept adaptable as to be able to match the model to the object’s individual
stature.

As geometry model, a publicly available VRML (Virtual Reality Modelling
Language) geometry model of a human body is used, Figure 22.1a. The model
consists of 16 rigid body segments, one for the upper and lower torso, neck, and
head, and pairs for the upper arms, lower arms, hands, upper legs, lower legs
and feet. In total, the human body model comprises more than 21000 triangles.
A hierarchical kinematic chain connects all body segments, resembling the
anatomy of the human skeleton. 17 joints with a total of 35 joint parameters
define the pose of the virtual character. Different joints in the body model
provide different numbers of rotational degrees of freedom the same way as
the corresponding joints in an anatomical skeleton do. For global positioning,
the model provides three translational degrees of freedom which influence the
position of the skeleton root. The root of the model is located at the pelvis. The
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(a) (b) (c) (d)

Fig. 22.1. (a) Surface model and the underlying skeletal structure. Spheres indicate
joints and the different parameterizations used; blue sphere – 3 DOF ball joint, green
sphere – 1 DOF hinge joint, red spheres (two per limb) – 4 DOF. The black/blue
sphere indicates the location of three joints, the root of the model and joints for the
upper and lower half of the body. (b) The upper figure shows the parameterization
of a limb, consisting of 3 DOF for the wrist position in local shoulder coordinates
(shown in blue) and 1 DOF for rotation around the blue axis. The lower right figure
demonstrates an exaggerated deformation of the arm that is achieved by appro-
priately tweaking the Bézier parameters. (c) Schematic illustration of local vertex
coordinate scaling by means of a Bézier scaling curve for the local +x direction. (d)
The two planes in the torso illustrate the local +x,-x and +z,-z scaling directions,
respectively.

kinematic chain is functionally separated in an upper body half and a lower
body half. The initial joints of both kinematic sub-chains spatially coincide
with the model root.

In Figure 22.1a individual joints in the body model’s kinematic chain are
drawn and the respective joint color indicates if it is a 1-DOF hinge joint, a
3-DOF ball joint, or a joint being part of our custom limb parameterization.
Each limb, i.e., complete arm or leg, is parameterized via four degrees of free-
dom. These are the position of the tip, i.e., wrist or ankle, and the rotation
around an axis connecting root and tip, Figure 22.1b. This limb parameter-
ization was chosen because it is particularly well-suited for an efficient grid
search of its parameter space, Section 22.5. The head and neck articulation is
specified via a combination of a 3-DOF ball joint and a 1-DOF hinge joint.
The wrist provides three degrees of freedom and the foot motion is limited to
a 1-DOF hinge rotation around the ankle. In total, 35 pose parameters fully
specify a body pose.

In addition to the pose parameters, the model provides anthropomorphic
shape parameters that control the bone lengths as well as the structure of the
triangle meshes defining the body surface.

Each of the 16 body segments features a scaling parameter that scales the
bone as well as the surface mesh uniformly in all three coordinate directions
(in the local coordinate frame of the segment).
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In order to match the geometry more closely to the shape of the real human
each segment features four one-dimensional Bézier curves B+x(u), B−x(u),
B+z(u), B−z(u) which are used to scale individual coordinates of each vertex
v = (vx, vy, vz) in the local triangle mesh. The scaling is performed in the
local +x,-x,+z, and -z directions of the segment’s coordinate frame, which
are orthogonal to the direction of the bone axis. For instance

vx scaled = B+x(u) · vx (22.1)

in the case of scaling in +x -direction, where u ∈ [0, 1] is the normalized
y-coordinate of the vertex in the local frame (in bone direction). Figure 22.1
shows the effect of changing the Bézier scaling values using the arm segment
as an example. Intuitively, the four scaling directions lie on two orthogonal
planes in the local frame. For illustration, we show these two planes in the
torso segment in Figure 22.1d.

22.5 Silhouette-based Analysis-Through-Synthesis

The challenge in applying model-based analysis for free-viewpoint video recon-
struction is to find a way how to automatically and robustly adapt the geome-
try model to the subject’s appearance as it was recorded by the video cameras.
Since the geometry model is suitably parameterized to alter its shape and
pose, the problem reduces to determining the parameter values that achieve
the best match between the model and the video images. This task is re-
garded as an optimization problem. The subject’s silhouettes, as seen from
the different camera viewpoints, are used to match the model to the video
images (an idea used in similar form in [23]): The model is rendered from all
camera viewpoints, and the rendered images are thresholded to yield binary
masks of the model’s silhouettes. The rendered model silhouettes are then
compared to the corresponding image silhouettes [6, 43–46]. As comparison
measure, the number of silhouette pixels that do not overlap is determined.
Conveniently, the exclusive-or (XOR) operation between the rendered model
silhouette and the segmented video-image silhouette yields those pixels that
are not overlapping. The energy function thus evaluates to:

EXOR(μ) =
N∑

i=0

X∑
x=0

Y∑
y

(Ps(x, y)∧!Pm(x, y)) ∨ (!Ps(x, y) ∧ Pm(x, y)) (22.2)

where μ is the model parameters currently considered, e.g., pose or anthropo-
morphic parameters, N the number of cameras, and X and Y the dimensions
of the image. Ps(x, y) is the 0/1-value of the pixel (x, y) in the capture image
silhouette, while Pm(x, y, μ) is the equivalent in the reprojected model image
given that the current model parameters are μ. Fortunately, this XOR energy
function can be very efficiently evaluated in graphics hardware, Figure 22.2.
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Fig. 22.2. Hardware-based analysis-through-synthesis for free-viewpoint video: To
match the geometry model to the multi-video recordings of the actor, the image
foreground is segmented and binarized. The model is rendered from all camera
viewpoints. The boolean XOR operation is executed between the foreground images
and the corresponding model renderings, and the number of remaining pixels in all
camera views serves as matching criterion. Model parameter values are varied via
numerical optimization until the XOR result is minimal. The numerical minimiza-
tion algorithm runs on the CPU while the energy function evaluation is implemented
on the GPU.

With 8 cameras, a Pentium III with a GeForce 6800 graphics board easily
performs more than 250 of such matching function evaluations per second.

To adapt model parameter values such that the mismatch score be-
comes minimal, a standard numerical optimization algorithm, such as Powell’s
method [34], runs on the CPU. As a direction set method it always pertains
a number of candidate descend directions in parameter space. The optimal
descend in one direction is computed using Brent’s line search method. For
each new set of model parameter values, the optimization routine invokes the
matching function evaluation routine on the graphics card.

One valuable benefit of model-based analysis is the low-dimensional
parameter space when compared to general reconstruction methods: The
parameterized model provides only a few dozen degrees of freedom that need
to be determined, which greatly reduces the number of potential local minima.
Furthermore, many high-level constraints are implicitly incorporated, and ad-
ditional constraints can be easily enforced by making sure that all parameter
values stay within their anatomically plausible range during optimization.
Finally, temporal coherence is straightforwardly maintained by allowing only
some maximal rate of change in parameter value from one time step to the
next.

The silhouette-based analysis-through-synthesis approach is employed for
two purposes, the initialization or shape adaptation of the model’s geometry
and the computation of the body pose at each time step.
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Shape Adaptation

To apply the silhouette-based model pose estimation algorithm to real-world
multi-video footage, the generic geometry model must first be initialized, i.e.
its proportions must be adapted to the subject in front of the cameras. To
achieve this, we apply the silhouette-based analysis-through-synthesis algo-
rithm to optimize the anthropomorphic parameters of the model. This way,
all segment surfaces can be deformed until they closely match the actor’s
stature.

During model initialization, the actor stands still for a brief moment in a
predefined pose to have his silhouettes recorded from all cameras. The generic
model is rendered for this known initialization pose, and without user inter-
vention, the model proportions are automatically adapted to the individual’s
silhouettes. First, only the torso is considered. Its position and orientation is
determined approximately by maximizing the overlap of the rendered model
images with the segmented image silhouettes. Then the pose of arms, legs and
head are recovered by rendering each limb in a number of orientations close
to the initialization pose and selecting the best match as starting point for re-
fined optimization. This step is identical to the optimization which we perform
for pose determination (see Section 22.5). Following the model hierarchy, the
optimization itself is split into several suboptimizations in lower-dimensional
parameter spaces. After the model has been coarsely adapted in this way, the
uniform scaling parameters of all body segments are adjusted. For selected
body segments (e.g., arm and leg segments) we found it advantageous to scale
their dimension only in the bone direction, and to leave the control of the
triangle mesh shape orthogonal to this direction to the Bézier parameters.
The algorithm then alternates typically around 5–10 times between optimiz-
ing joint parameters and segment scaling parameters until it has converged.
Finally, the Bézier control parameters of all body segments are optimized
in order to fine-tune each segment’s outline such that it complies with the
recorded silhouettes. In Figure 22.3, the initial model shape, its shape after
five iterations of pose and scene optimization and its shape after Bézier scaling
are shown.

(a) (b) (c)

Fig. 22.3. (a) template model geometry; (b) model after 5 iterations of pose and
scale refinements; (c) model after adapting the Bézier scaling parameters.
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Obviously, an exact match between model outline and image silhouettes
is not attainable since the parameterized model has far too few degrees of
freedom. Thanks to advanced rendering techniques an exact match is neither
needed for convincing dynamic texturing (Section 22.6) nor for reflectance es-
timation (Section 22.7). The initialization procedure takes only a few seconds.
From now on the anthropomorphic shape parameters remain fixed.

Alternatively, not only the static initialization pose but a sequence of pos-
tures can be employed to reconstruct a spatio-temporally consistent shape
model. After recovery of this spatio-temporally consistent model using the
previously mentioned silhouette matching, it is also feasible to reconstruct
smaller-scale per-time step surface deformations, i.e. displacements rj for each
vertex j in a mesh [7]. We achieve this by minimizing an energy functional of
the form

Edisp(vj , rj) = wIEI(vj + rj) + wSES(vj + rj)
+ wDED(vj + rj) + EP (vj , vj + rj)

(22.3)

EI(vj + rj) is a multi-view color-consistency measure. The term ES(vj + rj)
penalizes vertex positions that project into image plane locations that are very
distant from the boundary of the person’s silhouette. The term ED(vj + rj)
aims at maintaining the segment’s mesh quality by measuring the distortion
of triangles. We employ a distortion measure which is based on the Frobenius
norm [32]. Finally, the term EP (vj , vj + rj) penalizes visibility changes that
are due to moving a vertex j from position vj to position vj + rj. Appropriate
weighting coefficients wI , wS , wD, and wP were found through experiments.

After calculating the optimal displacement for a subset of vertices, these
displacements are used to smoothly deform the whole region by means of
a Laplacian interpolation method. While this approach can capture time-
varying geometry at sufficient detail, its resolution is still limited by the mesh
granularity and the implicit smoothness constraint imposed by the Laplacian
deformation scheme.

Marker-less Pose Tracking

The individualized geometry model automatically tracks the motion of the
human dancer by optimizing the 35 joint parameters for each time step. The
analysis-through-synthesis framework enables us to capture these pose pa-
rameters without having the actor wear any specialized apparel. This is a
necessary precondition for free-viewpoint video reconstruction, since only if
motion is captured completely passively can the video imagery be used for
texturing. The model silhouettes are matched to the segmented image silhou-
ettes of the actor so that the model performs the same movements as the
human in front of the cameras, Figure 22.4.

At each time step t an optimal set of pose parameters, Pt, is found by
performing a numerical minimization of the silhouette XOR energy functional,
Equation (22.2), in the space of pose parameters.
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(a) (b) (c)

Fig. 22.4. (a) Silhouette XOR; (b) body model; (c) textured body model from same
camera view.

The numerical optimization of the multidimensional, nonconvex match-
ing functional can potentially result in suboptimal fitting. A straightforward
approach would be to apply any standard numerical minimization method
to optimize all pose-related degrees of freedom in the model simultaneously.
This simple strategy, however, exhibits some of the fundamental pitfalls that
make global optimization infeasible. In the global case, the energy function
reveals many erroneous local minima. Fast movements between consecutive
time frames are almost impossible to track since it may happen that no overlap
between the model and the image silhouette occurs that guides the optimizer
towards the correct solution. A different problem arises if one limb moves
very close to the torso. In this case, it is quite common for global minimiza-
tion method to find a local minimum in which the limb penetrates the torso.
Instead, we present a method that enables us to use a standard direction set
minimization scheme to robustly estimate pose parameters. We effectively con-
strain the search space by exploiting structural knowledge about the human
body, knowledge about feasible body poses, temporal coherence in motion
data and a grid sampling preprocessing step.

To efficiently avoid local minima, the model parameters are not all opti-
mized simultaneously. Instead, the model’s hierarchical structure is exploited.
Model parameter estimation is performed in descending order with respect to
the individual segments’ impact on silhouette appearance and their position
along the model’s kinematic chain, Figure 22.5. First, position and orientation
of the torso is varied to find its 3D location. Next, arms, legs and head are
considered. Finally, hands and feet are examined.

Temporal coherence is exploited by initializing the optimization for one
body part with the pose parameters Pt−1 found in the previous time step.
Optionally, a simple linear prediction based on the two preceding parameter
sets is feasible.

Due to the limb parameterization described in Section 22.4, fitting an
arm or leg is a four-dimensional optimization problem. In order to cope with
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Fig. 22.5. For motion capture, the body parts are matched to the images in hierar-
chical order: the torso first, then arms, legs and head, finally hands and feet. Local
minima are avoided by a limited regular grid search for some parameters prior to
optimization initialization.

fast body motion that can easily mislead the optimization search, we precede
the numerical minimization step with a regular grid search. The grid search
samples the four-dimensional parameter space at regularly spaced values and
checks each corresponding limb pose for being a valid pose. Using the arm as
an example, a valid pose is defined by two criteria. Firstly, the wrist and the
elbow must project into the image silhouettes in every camera view. Secondly,
the elbow and the wrist must lie outside a bounding box defined around the
torso segment of the model. For all valid poses found, the error function is
evaluated, and the pose that exhibits the minimal error is used as starting
point for a direction set downhill minimization. The result of this numerical
minimization specifies the final limb configuration. The parameter range, from
which the grid search draws sample values, is adaptively changed based on
the difference in pose parameters of the two preceding time steps. The grid
sampling step can be computed at virtually no cost and significantly increases
the convergence speed of the numerical minimizer.

Optionally, the whole pose estimation pipeline can be iterated for a single
time step. Our results show that with the appropriate specification of con-
straints even a standard downhill minimizer can perform as well in human
body tracking as more complicated statistical optimization schemes, such as
condensation [11].

The performance of the silhouette-based pose tracker can be further
improved by capitalizing on the structural properties of the optimization
problem [44]. First, the XOR evaluation can be sped up by restricting the
computation to a sub-window in the image plane and excluding stationary
body parts from rendering. Second, optimization of independent sub-chains
can be performed in parallel. A prototype implementation using 5 PCs and 5
GPUs, as well as the improved XOR evaluation exhibited a speed-up of up to
factor 8 (see also Section 22.6.3). For details about these improvements, the
interested reader is referred to [44].
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22.5.1 Augmented Pose Tracking through 3D Optical Flow

While silhouette-based analysis robustly captures large-scale movements, in
some cases the body pose cannot be resolved unambiguously from object sil-
houettes alone. Especially small-scale motions may be irresolvable because
at limited image resolution, small protruding features, such as nose or ears,
may not be discernible in the silhouettes. In a free-viewpoint video sys-
tem, inaccuracies in recovered body pose inevitably lead to rendering arti-
facts when the 3D videos are displayed. To resolve ambiguities as well as
to refine silhouette-estimated model pose, we enhance our original analysis-
through-synthesis approach such that the object’s surface texture is consid-
ered in addition [43,46]. We incorporate texture information into the tracking
process by computing corrective motion fields via 3D optical flow or scene
flow, Figure 22.6b, c. The reconstruction of the 3D motion field from the 2D
optical flows is possible using a technique described in [49].

If correspondences in the image plane are known, i.e., it is known to which
image coordinates 3D points project in each camera view, the scene flow can
be reconstructed by solving a linear system of equations. In our free-viewpoint
video approach, the correspondences are known for each vertex because we
have an explicit body model, and the projection matrices Pi for each recording
camera i have been determined via calibration. The projection matrix Pi

describes the relationship between a 3D position of a vertex and its projection
into the image plane of the camera i, ui = (ui, vi)T .

The differential relationship between the vertex x with coordinates
(x, y, z)T and ui is described by the 2 × 3 Jacobian matrix Ji = ∂ui

∂xi
:

oi =
dui

dt
= Ji

dx
dt

(22.4)

In other words, the Jacobian describes the relationship between a small change
in 3D position of a vertex, and the change of its projected image in camera

(a) (b) (c)

Fig. 22.6. (a) 3D motion (scene flow) of a surface point and the corresponding
observed optical flows in two camera views. Body model with corrective motion
field (green arrows) before (b) and after (c) pose update.
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i. The term dui

dt is the optical flow oi observed in camera i, dx
dt is the corre-

sponding scene flow of the vertex (Figure 22.6). Given a mathematical camera
model, the Jacobian can be computed analytically [49]. If a vertex is visible
from at least two camera views, an equation system of the form Bdx

dt = U can
be formulated, whose solution is the scene flow of the vertex.

We incorporate the scene flow information into our silhouette-based frame-
work by developing the following predictor-corrector approach. Considering an
arbitrary time step t + 1, the augmented motion capture algorithm works as
follows: Starting with a set of 35 body pose parameters Pt that were found to
be optimal for time step t, the system first computes an estimate of the pose
parameters P ′

sil,t+1 at time t + 1 by employing the silhouette-based motion
estimation scheme, Section 22.5. In a second step, estimate P ′

sil,t+1 is aug-
mented by computing a 3D corrective motion field from optical flows. The
model that is standing in pose P ′

sil,t+1 and that is textured with the video
images from time t is rendered into all camera views. The images of the back-
projected model form a prediction of the person’s appearance at t + 1. The
optical flows are computed for each pair of back-projected model view and
corresponding segmented video frame at time t+ 1. From camera calibration,
the camera matrix of each recording imaging sensor is known. Since, in addi-
tion, the geometric structure of the body model is available, for each model
vertex corrective flow vectors in 3D can be computed from the corrective 2D
optical flows in all camera views. The end-point of each motion vector is the
position at which the respective vertex should be in order for the whole model
to be in a stance that is photo-consistent with all camera views. This informa-
tion has to be translated into pose update parameters for the model’s joints
that bring the model into the photo-consistent configuration. We compute the
differential pose update, Pdiff,t+1, in a least-squares sense [19] and apply it to
the model after P ′

sil,t+1 in order to obtain the final pose estimate Pt+1 for
time t+1. The final pose parameter estimate serves as a starting point for the
pose determination in the next time step.

22.6 Free-viewpoint Video with Dynamic Textures

By combining the silhouette-based analysis-through synthesis method with
a dynamic texture generation we can reconstruct and render free-viewpoint
videos of human actors that reproduce the omnidirectional appearance of
the actor under fixed lighting conditions. First, the shape and the motion
of the body model are reconstructed by means of the approach described in
Section 22.5.

A high-quality 3D geometry model is now available that closely matches
the dynamic object in the scene over the entire length of the sequence. To
display the object photo-realistically, the recorded video images are used for
texturing the model surface.
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Since time-varying video data is available, model texture doesn’t have to be
static. To create convincing surface appearance we capitalize on the projective
texturing capability of modern GPUs.

Prior to display, the geometry model as well as the video cameras’ calibra-
tion data is transferred to the graphics board. During rendering, the user’s
viewpoint information, the model’s updated pose parameter values, the cur-
rent video images, as well as the visibility and blending coefficients νi, ωi for
all vertices and cameras i are continuously transferred to the graphics card.

The color of each rendered pixel c(j) is determined by blending all l video
images Ii according to

c(j) =
l∑

i=1

νi(j) ∗ ρi(j) ∗ ωi(j) ∗ Ii(j) (22.5)

where ωi(j) denotes the blending weight of camera i, ρi(j) is the optional view-
dependent rescaling factor, and νi(j) = {0, 1} is the local visibility. During
texture preprocessing, the weight products νi(j)ρi(j)ωi(j) have been normal-
ized to ensure energy conservation. Technically, Equation (22.5) is evaluated
for each fragment by a fragment program on the graphics board. The raster-
ization engine interpolates the blending values from the triangle vertices.

By this means, time-varying cloth folds and creases, shadows and facial
expressions are faithfully reproduced, lending a very natural, dynamic appear-
ance to the rendered object. The computation of the blending weights and the
visibility coefficients is explained in the following two subsections.

22.6.1 Blending Weights

The blending weights determine the contribution of each input camera image
to the final color of a surface point. Although our model geometry is fairly
detailed, it is still an approximation, and therefore the surfaces may locally
deviate from the true shape of the human actor. If surface reflectance can be
assumed to be approximately Lambertian, view-dependent reflection effects
play no significant role, and high-quality, detailed model texture can still
be obtained by blending the video images cleverly. Let θi denote the angle
between a vertex normal and the optical axis of camera i. By emphasizing for
each vertex individually the camera view with the smallest angle θi, i.e., the
camera that views the vertex most head-on, a consistent, detail-preserving
texture is obtained. A visually convincing weight assignment has been found
to be

ωi =
1

(1 + max
j

(1/θj) − 1/θi)α
(22.6)

where the weights ωi are additionally normalized to sum up to unity. The
parameter α determines the influence of vertex orientation with respect to
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(a) α = 0 (b) α = 3 (c) α = 15

Fig. 22.7. Texturing results for different values of the control factor α.

camera viewing direction and the impact of the most head-on camera view
per vertex, Figure 22.7. Singularities are avoided by clamping the value of
1/θi to a maximal value.

Although it is fair to assume that everyday apparel has purely Lambertian
reflectance, in some cases the reproduction of view-dependent appearance ef-
fects may be desired. To serve this purpose, our method provides the possibil-
ity to compute view-dependent rescaling factors, ρi, for each vertex on-the-fly
while the scene is rendered:

ρi =
1
φi

(22.7)

where φi is the angle between the direction to the outgoing camera and the
direction to input camera i.

22.6.2 Visibility

Projective texturing on graphics hardware has the disadvantage that occlusion
is not taken into account, so hidden surfaces also get textured. The z-buffer
test, however, allows determining for every time step which object regions are
visible from each camera.

Due to the use of a parameterized geometry model, the silhouette out-
lines in the images do not correspond exactly to the outline of the model.
When projecting video images onto the model, a texture seam belonging to
some frontal body segment may fall onto another body segment farther back,
Figure 22.8a. To avoid such artifacts, extended soft shadowing is applied: For
each camera, all object regions of zero visibility are determined not only from
the camera’s actual position, but also from several slightly displaced virtual
camera positions, Figure 22.8b. Each vertex is tested whether it is visible
from all camera positions, actual as well as virtual. A triangle is textured by a
camera image only if all of its three vertices are completely visible from that
camera.

While too generously segmented silhouettes do not affect rendering quality,
too small outlines can cause annoying non-textured regions. To avoid such
rendering artifacts, all image silhouettes are expanded by a couple of pixels
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(a) (b)

Fig. 22.8. (a) Small differences between object silhouette and model outline cause
erroneous texture projections (l) that can be removed using soft-shadow visibility
computation. (b) Morphologically dilated segmented input video frames that are
used for projective texturing.

prior to rendering. Using a morphological filter operation, the object outlines
of all video images are dilated to copy the silhouette boundary pixel color
values to adjacent background pixel positions, Figure 22.8.

22.6.3 Results

Our free-viewpoint video reconstruction and rendering approach has been
tested on a variety of scenes, ranging from simple walking motion over karate
performances to complex and expressive ballet dance. The sequences are be-
tween 100 and 400 frames long and were recorded from eight camera perspec-
tives.

Ballet dance performances are ideal test cases as they exhibit rapid, com-
plex motion. The motion capture subsystem demonstrates that it is capable of
robustly following human motion involving fast arm motion, complex twisted
poses of the extremities, and full body turns (Figure 22.9). The comparison
to true input images shows that the virtual viewpoint renditions look very
lifelike. Certainly, there are extreme body poses such as the fetal position
that cannot be reliably tracked due to insufficient visibility. To our knowl-
edge, no nonintrusive system has demonstrated that it is able to track such
extreme positions. In combination with our texture generation approach con-
vincing novel viewpoint renditions can be generated, as it is also shown in
Figure 22.10. Subtle surface details, such as wrinkles in clothing, are nicely
reproduced in the renderings. In Figure 22.10 snapshots from a freeze-and-
rotate sequence, in which the body motion is stopped and the camera flies
around the scene, are depicted.

The free-viewpoint renderer can easily replay dynamic 3D scenes at the
original capture frame rate of 15 fps. The maximal possible frame rate is
significantly higher. Standard TV frame rate of 30 fps can easily be attained
even on a XEON 1.8 GHz CPU featuring a GeForce 3 GPU. On a Pentium
IV with a GeForce 6800 frame rates of more than 100 fps are feasible.
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Fig. 22.9. Novel viewpoints are realistically synthesized. Two distinct time instants
are shown on the left and right with input images above and novel views below.

Fig. 22.10. Conventional video systems cannot offer moving viewpoints of scenes
frozen in time. However, with our free-viewpoint video system freeze-and-rotate
camera shots of body poses are possible. The pictures show such novel viewpoints
of scenes frozen in time for different subjects and different types of motion.

We tested the execution speeds of individual algorithmic components of
our reconstruction method. We have 5 PCs at our disposition, each featuring
an Intel XEON 1.8 GHz CPU and a GeForce 3 GPU. On a single PC, sil-
houette fitting for pose capture takes between 3 s and 14 s. If we employ the
optimized XOR evaluation and the parallel motion capture system [44], fitting
times of below a second are feasible. To get an impression of how much the
employed hardware influences the fitting performance, we have performed
tests on a Pentium IV 3.0 GHz with a GeForce 6800. On this machine, fitting
times of around a second are feasible even with the nonoptimized version
of the tracker. We expect that with five such machines, fitting times in the
range of 0.2 s per frame are feasible.

The augmented pose tracking can improve the accuracy of the recovered
poses, however at the cost of increasing the fitting time [46]. Using eight
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cameras and 320x240 pixel images, it takes between 10 s and 30 s per time step
to compute the 2D optical flows by means of the hierarchical Lukas Kanade
approach, depending on what window size and hierarchy depth are chosen [46].
Any faster flow algorithm would be equally applicable. The reconstruction of
the corrective flow field and the pose update only takes around 0.3 s even on
the old XEON machine. The employment of the corrective motion field step
leads to PSNR (Peak Signal-to-Noise Ratio) improvements with respect to
the ground truth data in the range of 0.3–0.9 dB, depending on the sequence.
Although these improvements are on a small scale, they may well be noticeable
if one zooms into the scene.

The method presented in this Section is subject to a few limitations. First,
the motion estimation process is done offline, making the system unsuitable
for live broadcast applications. However, it is foreseeable that the ongoing
performance advancement of graphics hardware will make this feasible in a
few years time. The appearance of the actor cannot be faithfully represented
if he wears very loose apparel. A further limitation is that we can currently
only reproduce the appearance of the actor under the illumination conditions
that prevailed at the time of recording. We describe how to overcome this
limitation in the following Section.

Even though our approach exhibits these limitations, our results show
that our method enables high-quality reconstruction of free-viewpoint videos.
Convincing novel viewpoint renditions of human actors can be generated in
real-time on off-the-shelf graphics hardware.

22.7 Relightable Free-viewpoint Video

In the previous section, we have introduced an approach to realistically render
human actors for all possible synthetic viewpoints. However, this algorithm
can only reproduce the appearance of the actor under the lighting conditions
that prevailed at the time of acquisition. To implant a real-world actor into
surroundings different from the recording environment, her appearance must
be adapted to the new illumination situation. To this end, a description of
the actor’s surface reflectance is required. We have enhanced our original free-
viewpoint video pipeline such that we are able to reconstruct such dynamic
surface reflectance descriptions. The basic idea behind this process that we
call dynamic reflectometry is that when letting a person move in front of a
calibrated static setup of spot lights and video cameras the cameras are not
only texture sensors but actually reflectance sensors. Due to the motion of the
person, each point on the body surface is seen under many different incoming
light and outgoing viewing directions. Thus, we can fit a dynamic surface
reflectance model to each point on the body surface, which consists of a per-
texel parametric bidirectional reflectance distribution function and a per-texel
time-varying normal direction. We now briefly review the algorithmic steps



22 Video-based Capturing and Rendering of People 551

needed to generate relightable free-viewpoint videos and refer the interested
reader to [42,48] for technical details.

22.7.1 Modifications to Original Pipeline

During recording, we employ two calibrated spot lights, i.e., we know their
positions and photometric properties. For each person and each type of ap-
parel, we record one sequence, henceforth termed reflectance sequence (RS),
in which the person performs a rather simple rotation motion in front of the
setup. The RS will be used to estimate the surface reflectance properties. The
actual relightable free-viewpoint videos, as well as the time-varying normal
map are reconstructed from the so-called dynamic sequences (DS), in which
the actor can do arbitrary movements.

Reflectance estimation causes more strict requirements to the quality of
the employed body model. In order to prevent rendering artifacts at body
segment boundaries and to facilitate spatio-temporal texture registration, we
transform the shape-adapted segmented body model (Section 22.4) into a
single-skin model by means of an interactive procedure.

Prior to reflectance estimation we transform each input video frame into
a 2D surface texture. Textural representation of surface attributes facilitates
rendering of the relightable free-viewpoint videos and also enables us to take
measures to enhance spatio-temporal multi-view texture registration. Incor-
rect multi-view registration would eventually lead to erroneous reflectance
estimates. There are two primary reasons for inaccurate texture registration,
first the fact that we use only an approximate model, and second, transversal
shift of the apparel while the person is moving. We counter the first problem
by warping the multi-view input images such that they comply with the body
model. The motion of textiles is identified and compensated by optical flow
computation and texture warping. Please refer to [42, 48] for the details of
these methods.

22.7.2 Reflectance Estimation and Rendering

As stated previously, our dynamic reflectance model is comprised of two
components, namely a parametric BRDF model, and a time-varying surface
normal field. The BRDF is the quotient between outgoing radiance in one
direction and incoming irradiance from another direction. Parametric rep-
resentations of the BRDF are very advantageous, because they are able to
represent the complex reflectance function in terms of a few parameters of a
predefined functional skeleton. The BRDF thus compactly represents surface
reflectance in terms of 4 direction parameters, the incoming light direction
and the outgoing viewing direction, as well as the model parameters. In our
approach, we can employ any arbitrary BRDF representation, but we mainly
used the Phong [33] and Lafortune [22] models.
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In the dynamic sequence, we collect several samples of the BRDF for each
surface point, or in GPU terminology, for each texel. The goal is to find
optimal model parameters for each texel that best reproduce the collected re-
flectance samples. We formulate this as the solution to a least-squares problem
in the difference between collected samples and predicted appearance accord-
ing to the current estimate. The current appearance is predicted by evaluating
the illumination equation for each surface point given the current estimate.
Once the BRDF model has been estimated for each texel, we can use it to
estimate time-varying surface normals from every DS sequence in which the
person wears the same clothing. This way, we can correctly capture and relight
also time-varying surface details, such as wrinkles in clothing.

The BRDF parameters and normal maps are stored in respective texture
images. At rendering time, the body model is displayed in the sequence of
captured body poses and the illumination equation is, in graphics hardware,
evaluated for each rendered fragment of the model. We can render and relight
free-viewpoint videos in real-time on commodity graphics hardware. For illu-
mination, it is feasible to use both normal point or directional light sources, or
even captured real-world illumination from HDR environment maps. Example
renderings of actors under novel virtual lighting conditions can be seen in
Figure 22.12. Even subtle surface details are faithfully reproduced in the syn-
thetic lighting environment, Figure 22.11.

22.7.3 Results and Discussion

We have tested our approach on several motion sequences showing three dif-
ferent actors, different styles of motion, and six different styles of apparel. The
sequences were recorded with our new camera setup at 25 fps, thus provid-
ing 1004x1004 pixel frame resolution. The typical length of a RS sequence is
around 300 frames, the length of the employed motion sequences was in the
range of 300–500 frames. For our tests, we resorted to the Phong reflectance
model.

Our dynamic scene description allows us to photo-realistically render hu-
man actors under both artificial and real world illumination that has been
captured in high-dynamic range environment maps, see Figure 22.12a, b. Even
with realistically cast shadows, relightable 3D videos can be displayed in real-
time on commodity graphics hardware. We can also implant actors into virtual
environments as they are commonly used in computer games, such as a little
pavilion with mirroring floor, Figure 22.12b (right). Our dynamic reflectome-
try method faithfully captures time-varying surface details, such as wrinkles
in clothing, Figure 22.11a. This way, they can be realistically displayed under
varying artificial lighting conditions, Figure 22.11b.

Reflectance estimation typically takes one hour on a Pentium IV 3.0 GHz.
Normal estimation takes approximately 50 s per time step, and it can be
parallelized to reduce computation time. Optional input frame warping takes
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(a)

(b)

Fig. 22.11. (a) Comparison between an input frame (left) and the corresponding
normal map that we reconstructed. For rendering, the three components of the
surface normals were encoded in the RGB color channels. (Even in a grayscale
rendition) one can see that the geometry and not only the texture of subtle surface
details has been captured. (b) This level of accuracy also enables us to faithfully
reproduce time-varying geometric details, such as the wrinkles in the trousers around
the knee.

around 10 s for one pair of reference image and reprojected image. Cloth shift
compensation accounts for an additional 35 s of computation time for one
time step of video.

We have validated our dynamic reflectometry method both visually and
quantitatively via comparison to ground truth image data and reflectance
descriptions obtained with laser-scanned geometry. For a detailed elaboration
on these evaluations, we would like to refer the reader to [42,48].

Our approach is subject to a couple of limitations: The single-skin sur-
face model is generated in an interactive procedure. The method presented
in Section 22.8 would be one way to overcome these limitations. Further-
more, although we can handle normal everyday apparel, we can not account
for loose apparel whose surface can deviate almost arbitrarily from the body
model. The approach described in Chapter 12 could be employed to conquer
this limitation. Sometimes, we observe small rendering artefacts due to un-
dersampling (e.g., underneath the arms). However, we have verified that the
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(a)

(b)

Fig. 22.12. (a) 3D videos rendered under different disco-type artificial lighting
conditions. (b) Performances of different subjects rendered in captured real-world
lighting conditions (l), (m) and in a game-type lighting environment (r). In either
case, the actors appear very lifelike and subtle surface details are faithfully repro-
duced. Also shadows and mirroring effects can be rendered in real-time.

application of a RS sequence showing several rotation motions with different
body postures almost completely solves this problem.

Despite these limitations, our method is an effective combination of algo-
rithmic tools that allows for the creation of realistic relightable dynamic scene
descriptions.

22.8 Future Directions

The commitment to a parameterized body model enables us to make the in-
verse problems of motion estimation and appearance reconstruction tractable.
However, a model-based approach also implies a couple of limitations. Firstly,
a template model is needed for each type of object that one wants to record.
Secondly, we currently cannot handle people wearing very loose apparel. Chap-
ter 12 explains a method to capture clothed people that we could combine with
our appearance estimation framework. Furthermore, while a relatively smooth
template model enables easy fitting to a wide range of body shapes, more de-
tailed geometry specific to each actor would improve rendering quality even
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Fig. 22.13. (a) The motion of the template model (l) is mapped onto target (r) by
only specifying correspondences between individual triangles. (b) We can now use
the moving laser scan instead of the moving template model in our free-viewpoint
video pipeline. The image on the left is an input frame, the image on the right the
free-viewpoint video with laser-scanned geometry.

more. For instance, it would be intriguing to have a method at hand that
enables us to make a high-quality laser scan follow the motion of the actor
in each video frame without having to manually design skeleton models or
surface skinning parameters.

To achieve this goal, we have developed a method that enables us to make
our moving template model drive the motion of a high quality laser scan of the
same person without resorting to a kinematic skeleton [9]. The user only needs
to mark a handful of corresponding triangles between the moving template and
the target mesh, Figure 22.13a. The transformations of the marked triangles
on the source are mapped to their counterparts on the high-quality scan.
Deformations for all the other triangles are interpolated on the surface by
means of a harmonic field. The surface of the appropriately deformed scan
at each time step is computed by solving a Poisson system. Our framework
is based on the principle of differential mesh editing and only requires the
solution of simple linear systems to map poses of the template to the target
mesh. As an additional benefit, our algorithm implicitly solves the motion
retargeting problem and automatically generates convincing non-rigid surface
deformations. Figure 22.13b shows an example where we mapped the motion
of our moving template model onto a high-quality static laser scan. This way,
we can easily use detailed dynamic scene geometry as our underlying shape
representation. For details on the correspondence specification and the mesh-
deformation framework, we would like to refer the reader to [8, 9].

22.9 Conclusions

We have presented a compendium of methods from a young and challenging
field of research on the boundary between Computer Vision and Computer
Graphics. By jointly using an adaptable template body model and a marker-
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free motion capture approach we can capture both time-varying shape, time-
varying appearance and even time-varying reflectance properties of moving
actors. These dynamic scene models enable us to realistically display human
performances in real-time from novel virtual camera perspectives and under
novel virtual lighting conditions. The commitment to a shape prior enables us
to achieve our goal using only a handful of cameras. In future, we will further
investigate novel ways of incorporating high-quality shape models and more
general clothing models into our framework.
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Summary. This chapter discusses approaches for the efficient simulation of inter-
acting deformable objects. Due to their computing efficiency, these methods might
be employed in the model-based analysis of human motion.

The realistic simulation of geometrically complex deformable objects at interac-
tive rates comprises a number of challenging problems, including deformable mod-
elling, collision detection, and collision response. This chapter proposes efficient
models and algorithms for these three simulation components. Further, it discusses
the interplay of the components in order to implement an interactive system for
interacting deformable objects.

A versatile and robust model for geometrically complex solids is employed to
compute the dynamic behavior of deformable objects. The model considers elastic
and plastic deformation. It handles a large variety of material properties ranging
from stiff to fluid-like behavior. Due to the computing efficiency of the approach,
complex environments consisting of up to several thousand primitives can be simu-
lated at interactive speed.

Collisions and self-collisions of dynamically deforming objects are detected with
a spatial subdivision approach. The presented algorithm employs a hash table for
representing a potentially infinite regular spatial grid. Although the hash table does
not enable a unique mapping of grid cells, it can be processed very efficiently and
complex data structures are avoided.

Collisions are resolved with a penalty approach, i.e., the penetration depth of a
colliding primitive is processed to compute a force that resolves the collision. The
presented method considers the fact that only sampled collision information is avail-
able. In particular, the presented solution avoids non-plausible collision responses in
case of large penetrations due to discrete simulation steps. Further, the problem of
discontinuous directions of the penalty forces due to coarse surface representations
is addressed.

All presented models and algorithms process tetrahedral meshes with trian-
gulated surfaces. Due to the computing efficiency of all simulation components,
complex environments consisting of up to several thousand tetrahedrons can be
simulated at interactive speed. For visualization purposes, tetrahedral meshes are
coupled with high-resolution surface meshes.
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23.1 Introduction

There exist a variety of human motion analysis approaches that are based
on models [1, 52, 53, 70, 77]. For example, modelling the human body with
articulated rigid bodies allows for reconstructing the geometry of a human
body based on detected body parts and joints. While some existing solutions
consider the entire human body as non-rigid, they are nevertheless restricted
to rigid body parts and elastically deformable structures are neglected. In
this chapter, we discuss efficient solutions for the simulation of interacting
deformable objects that might be employed in realistic human body models
including deformable soft tissue. Augmenting articulated rigid bodies with
efficient deformable structures would improve the flexibility of model-based
tracking methods. Further, the accuracy and the robustness of human motion
analysis approaches could be improved. We discuss an efficient model for the
simulation of deformable solids and we present approaches to detect and to
process colliding deformable objects.

23.2 Related Work

Deformable modelling: Deformable models have been extensively investi-
gated in the last two decades [6, 32, 68, 85, 86]. Approaches based on mass-
spring models [13], particle systems [24], or FEM [50, 66] have been used to
efficiently represent 3D objects or deformable 2D structures, such as cloth [94]
or discrete shells [38]. Typical applications for these approaches can be found
in computational surgery [21] and games. Although very efficient algorithms
have been proposed [20, 21, 95], these approaches could handle only a few
hundred deformable primitives in real-time.

While many approaches are restricted to elastic deformation, models for
plastic deformation have been introduced in [69, 87] . However, no real-time
approximations of these models have been presented so far. In [38], a method
to simulate the dynamic behavior of discrete shells has been described. Very
promising results have been shown. However, the approach is computation-
ally expensive. Many approaches focus on solutions to specific problems in
deformable modelling. However, there exist no efficient, unified approach to
physically plausible simulation of 2D and 3D deformable models with elasticity
and plasticity. Further, there exist no framework where complex deformable
objects can be handled with integrated collision handling at interactive rates.

Collision detection: Efficient collision detection is an essential compo-
nent in physically-based simulation or animation [10,21], including cloth mod-
elling [13, 74, 93]. Further applications can be found in robotics, computer
animation, medical simulations, computational biology, and games [90].

Collision detection algorithms based on bounding-volume (BV) hierarchies
have proven to be very efficient and many types of BVs have been investigated.
Among the acceleration structures we find spheres [48, 75, 83], axis-aligned
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bounding boxes [12, 49], oriented bounding boxes [35], and discrete-oriented
polytopes [57]. In [96], various optimizations to BV hierarchies are presented.

Initially, BV approaches have been designed for rigid objects. In this
context, the hierarchy is computed in a pre-processing step. In the case of
deforming objects, however, this hierarchy must be updated at run time.
While effort has been spent to optimize BV hierarchies for deformable ob-
jects [59], they still pose a substantial computational burden and storage
overhead for complex objects. As an additional limitation for physically based
applications, BV approaches typically detect intersecting surfaces. The com-
putation of the penetration depth for collision response requires an additional
step.

As an alternative to object partitioning, other approaches employ dis-
cretized distance fields as volumetric object representation for collision detec-
tion. The presented results, however, suggest that this data structure is less
suitable for real-time processing of geometrically complex objects [44]. In [42],
a hybrid approach is presented which uses BVs and distance fields.

Recently, various approaches have been introduced that employ graph-
ics hardware for collision detection. In [3], a multi-pass rendering method
is proposed for collision detection. However, this algorithm is restricted to
convex objects. In [60], the interaction of a cylindrical tool with deformable
tissue is accelerated by graphics hardware. [46] proposes a multi-pass ren-
dering approach for collision detection of 2-D objects, while [54] and [55]
perform closest-point queries using bounding-volume hierarchies along with
a multi-pass-rendering approach. The aforementioned approaches decompose
the objects into convex polytopes.

There exist various approaches that propose spatial subdivision for colli-
sion detection. These algorithms employ uniform grids [29,91,97] or BSPs [61].
In [91], spatial hashing for collision detection is mentioned, but no details are
given. [64] presents a hierarchical spatial hashing approach as part of a robot
motion planning algorithm which is restricted to rigid bodies.

We employ spatial hashing for the collision detection of deformable tetra-
hedral meshes. R

3 is implicitly subdivided into small grid cells. Information
about the global bounding box of our environment is not required and 3D
data structures, such as grids or BSPs are avoided. Further, our approach in-
herently detects collisions and self-collisions. The parameters of the algorithm
have been investigated and optimized.

Collision response: Contact models and collision response for rigid and
deformable bodies are well investigated. Analytical methods for calculating
the forces between dynamically colliding rigid bodies have been presented in
[4,5,7,8,26,40,65,71]. These approaches solve inequality-constrained problems
which are formulated as linear complementarity problems (LCP). In addition
to analytical methods, a second class of collision response schemes is based
on so-called penalty forces. These approaches calculate response forces based
on penetration depths in order to resolve colliding objects. First solutions
have been presented in [72, 85]. Penalty-based approaches have been used in
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simulations with deformable objects, cloth and rigid bodies [22,62,65]. A third
approach which directly computes contact surfaces of colliding deformable
objects is presented in [30].

Due to their computing efficiency, penalty-based approaches are very
appropriate for interactive simulations of deformable objects. They can con-
sider various elasto-mechanical object properties. Friction and further surface
characteristics can also be incorporated. Penalty forces are computed based
on penetration depths and there exist many approaches that compute the
exact or approximative penetration depth of two colliding objects which is
defined as the minimum translation that one object undergoes to resolve the
collision. Exact penetration depth computations can be based on Minkowski
sums [15,39] or hierarchical object presentations [23], while approximative so-
lutions based on the GJK algorithm [33] and iteratively expanding polytopes
have been presented in [14,16]. Further approaches are based on object space
discretizations [27], employ graphics hardware [47,82], or introduce incremen-
tal optimization steps [56].

While existing approaches very efficiently compute the minimal pene-
tration depth, they do not address inconsistency problems of the result in
discrete-time simulations. One solution to this problem is continuous colli-
sion detection [76]. However, these approaches are computationally expensive
compared to discrete collision detection approaches and not appropriate for
deformable objects. This section presents an alternative solution to the incon-
sistency problems. The approach computes penetration depths which signifi-
cantly reduce artifacts in the respective collision response scheme.

23.3 Deformable Modelling

There is a growing demand for interactive deformable modelling in computa-
tional surgery and entertainment technologies, especially in games and movie
special effects. These applications do not necessarily require physically correct
deformable models, but efficient deformable models with physically plausible
dynamic behavior. Additionally, simulations should be robust and control-
lable, and they should run at interactive speed.

This section describes a unified method suitable for modelling deformable
tetrahedral or triangulated meshes with elasticity and plasticity. The proposed
model extends existing deformable modelling techniques by incorporating effi-
cient ways for volume and surface area preservation. The computing efficiency
of our approach is similar to simple mass-spring systems. Thus, environments
of up to several thousand deforming primitives can be handled at interactive
speed.

In order to optimize the dynamics computation various numerical integra-
tion schemes have been compared. Comparisons have been performed with
respect to robustness and performance in the context of our model. The de-
formable modelling approach is integrated into a simulation environment that
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can detect and handle collisions between tetrahedral meshes (see Sections 23.4
and 23.5). For visualization purposes, deformable tetrahedral meshes are cou-
pled with high-resolution surface meshes in the spirit of free-form deformation.

23.3.1 Model

We consider deformable solids that are discretized into tetrahedra and mass
points. In order to compute the dynamic behavior of objects we derive forces at
mass points from potential energies. These forces preserve distances between
mass points, they preserve the surface area of the object, and they preserve
the volume of tetrahedra. The material properties of a deformable object are
described by weighted stiffness coefficients of all considered potential energies.

Potential Energies

In order to represent deformations of objects, we consider constraints of the
form C(p0, . . . ,pn−1). These scalar functions depend on mass point positions
pi. They are zero if the object is undeformed. In order to compute forces
based on these constraints we consider the potential energy

E(p0, . . . ,pn−1) =
1
2
kC2 (23.1)

with k denoting a stiffness coefficient. This coefficient has to be defined for
each type of potential energy. The potential energy is zero if the object is un-
deformed. Otherwise, the energy is larger than zero. The potential energies of
our model are independent of rigid body modes of the object. The overall po-
tential energy derived from our constraints can be interpreted as deformation
energy of the object. Now, forces at mass points pi are derived as

Fi(p0, . . . ,pn−1) = − ∂

∂pi
E = −kC

∂C

∂pi
(23.2)

The overall force at a mass point is given as the sum of all forces based on
potential energies that consider this mass point. Damping which significantly
improves the robustness of the dynamic simulation can be incorporated as

Fi(p0, . . . ,pn−1,v0, . . . ,vn−1) =

⎛⎝−kC − kd

∑
0≤j<n

∂C

∂pj
vj

⎞⎠ ∂C

∂pi
(23.3)

with vi denoting the velocity of a mass point and kd denoting the damping
coefficient. We do not consider any additional constraints or boundary con-
ditions for our forces. In contrast to similar approaches [13, 17, 73], we do
not explicitly bound potential energies or forces resulting from the energies.
The direction of a force F based on a potential energy E corresponds to the
negative gradient of E, i.e., a dynamic simulation resulting from these forces
reduces the deformation energy of an object. Further, these forces are orthog-
onal to rigid body modes, i.e., they conserve linear and angular momentum
of the object.
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Distance Preservation

The first potential energy ED considers all pairs of mass points that are con-
nected by tetrahedral edges. ED represents energy based on the difference of
the current distance of two points and the initial or rest distance D0 with
D0 �= 0:

ED(pi,pj) =
1
2
kD

( |pj − pi| −D0

D0

)2

(23.4)

Forces FD resulting from this energy are computed as stated in Equation
(23.3). While damping of theses forces is very useful to improve the stability
of the numerical integration process, experiments have shown no significant
improvement of the stability if damping is applied to forces resulting from the
other two energies that we consider in our deformation model.

Surface Area Preservation

The second energy EA considers triples of mass points that build surface
triangles. EA represents energy based on the difference of the current area of
a surface triangle and its initial area A0 with A0 �= 0:

EA(pi,pj ,pk) =
1
2
kA

( 1
2 |(pj − pi) × (pk − pi)| −A0

A0

)2

(23.5)

Forces FA based on this energy are computed as stated in Equation (23.2).
Preservation of surface area is considered in the animation of discrete shells
and thin plates. In the animation of volumetric tetrahedral meshes the effect
of this energy is negligible.

Volume Preservation

Our third potential energy EV considers sets of four mass points that build
tetrahedra. EV represents energy based on the difference of the current volume
of a tetrahedron and its initial volume V0:

EV (pi,pj ,pk,pl) =
kV

2

(
1
6 (pj − pi) · ((pk − pi) × (pl − pi)) − V0

)2
Ṽ 2

0

(23.6)

with Ṽ0 = V0 if our model is applied to volumetric tetrahedral meshes. In this
case we assume V0 �= 0. However, if our model is applied to thin plates or
discrete shells, we can not assume V0 �= 0. In this case we use Ṽ0 =

√
2

12 l̄3 with
l̄ denoting the average edge length of a tetrahedron. Then, Ṽ0 corresponds to
the volume of a regular tetrahedron with edge length l̄. Based on EV forces
FV are computed as stated in Equation (23.2).

The preservation of the signed volume as it is calculated with the mixed
product in Equation (23.6) is of major importance to our deformation model.
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In contrast to the energies ED and EA which are not sensitive to inverted
tetrahedra, forces based on EV preserve the initial orientation of the vectors
in the mixed product. If a tetrahedron is inverted and the orientation of these
vectors changes, the sign of the volume represented with the mixed product
in Equation (23.6) changes accordingly. Thus, inverting a tetrahedron results
in forces FV that restore the original orientation of the tetrahedron. Due
to the normalization of all constraints that are considered in the potential
energies the stiffness coefficients kD, kA, kV are scale-invariant. These stiffness
coefficients can be used to mimic a wide range of material properties. Refer
to Section 23.3.4 for an overview of sets of stiffness coefficients for various
materials.

23.3.2 Tetrahedral and Triangulated Meshes

The proposed deformable model is designed to work with tetrahedral meshes.
However, the proposed deformation model can also be applied to arbitrary
triangle meshes. In this case, distance-preserving forces are considered for
all edges and area-preserving forces are considered for all triangles of the
mesh. Employing these forces, a dynamic simulation preserves all distances
between mass points and the surface area. However, there is no resistance
of the model against bending which is essential in cloth and discrete shell
simulation [9, 13,28,38,41,73].

In order to control bending of triangulated surface we generate a tetra-
hedron for each pair of adjacent triangles with one common edge. If vertices
opposite to this common edge are connected with an additional edge, a vir-
tual tetrahedron is generated. Now, preservation of the volume of the virtual
tetrahedron, while also preserving the area of the triangles, corresponds to
a preservation of the angle between the two adjacent triangles. If this angle
is zero, the volume of the virtual tetrahedron is zero. Otherwise, the volume
is larger or smaller than zero depending on a concave or convex angle. If the
volume-preserving force is considered for a virtual tetrahedron, its volume and
the respective angle between adjacent triangles are preserved. In case of thin
plates or cloth, the rest angle is zero. In case of discrete shells, arbitrary rest
angles can occur.

23.3.3 Numerical Integration

In order to compute the dynamic behavior of our deformable models, Newton’s
equation of motion is applied to all mass points. Based on initial values for
positions and velocities, a time step h, internal forces at mass points resulting
from our deformation energies, and external forces, such as gravity, piecewise
linear trajectories for all mass points are calculated employing a numerical
integration scheme. Based on performance comparisons we have chosen the
Verlet scheme for numerical integration [92]. This method has been very pop-
ular in molecular dynamics for decades and has recently been proposed in the
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context of physically-based simulation of cloth, general mass-spring systems,
and rigid bodies [28,41,51]. The Verlet algorithm uses positions and forces at
time t, and positions at the previous time t− h to calculate new positions at
time t + h:

x(t + h) = 2x(t) − x(t− h) + h2 F(t)
m

+ O(h4)

v(t + h) =
x(t + h) − x(t− h)

2h
+ O(h) (23.7)

with F(t) = FD(t) + FA(t) + FV (t). The Verlet method has several advan-
tages in environments with interacting, dynamically deforming objects. First,
only one force computation is required per integration step. This is essential,
since force computation is the most expensive part in the calculation of an
integration step. Second, the integration of positions has a local discretiza-
tion error of O(h4). This high accuracy allows for comparatively large time
steps. Third, the integration of positions is independent of the integration
of velocities if undamped forces are used. Depending on the application this
could be employed to omit the integration of velocities which would further
improve the performance. However, we do not use this property, since damp-
ing of distance-preserving forces is essential for the robustness of our model.
Further, collision response, as utilized in some of the experiments, requires
velocities of mass points.

Computing Time

In our experiments, we distinguish between computing efficiency of a numeri-
cal integration scheme which is discussed in this section, and the performance
of an integration method which is discussed in the following section. In a first
experiment, we have tested the computing efficiency of the Verlet scheme in
environments with dynamically deforming objects of varying geometrical com-
plexity. Table 23.1 shows the computing time for one numerical integration
step with various deformable objects that are depicted in Figure 23.1. Our
measurements show that 1500 forces can be updated at 1 KHz, while more
complex objects with 14000 forces can be updated at 140 Hz. Since we are
interested in an interactive behavior of our simulations, it is essential to have
update rates of the numerical integration that are above 20 Hz.

Note that the computing time for an integration step does not correspond
to the performance of an integration method. In order to assess the per-
formance, the ratio of integration time step and computing time has to be
considered. This problem is addressed in the following section.

Comparison to Other Approaches

In order to optimize the performance of our dynamically deforming objects, we
have implemented and compared several numerical integration methods that
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Table 23.1. Computing time for one Verlet step (Intel Pentium 4, 2.8 GHz). The
number of mass points is given for each model. Further, nD, nA, nV denote the
numbers of considered distance-preserving, area-preserving, and volume-preserving
forces per integration step, respectively. In case of nA = 0, the object surface is not
considered in the deformation model.

Setup Points nD nA nV Time
[ms]

Cube 1 8 18 0 5 0.03
Cuboid 242 981 0 500 1.00
Face 472 2622 874 1277 2.26
Cloth 1301 5478 1826 2739 5.03
Cube 2 1331 6930 0 5000 7.11
Santa 915 7500 2500 3700 7.36
Membrane 20402 90801 0 50000 114.61

Fig. 23.1. Models used for performance measurements: face, cube, membrane. Geo-
metrical complexity and computing times are given in Table 23.1.

have been proposed in previous approaches to physically-based deformation of
mass-spring or particle systems. We are not only interested in maximal time
steps or minimal computing time, but in optimal performance. Therefore,
we propose to consider the ratio of the numerical integration time step and
the computing time for one numerical integration time step as performance
measure.

As a test case, we have applied various integration schemes to a cube
with 1331 mass points, considering 5000 volume-preserving forces and 6930
distance-preserving forces. We have implemented and compared the fol-
lowing integration schemes: Verlet [92], velocity Verlet [84], Runge-Kutta,
Beeman [11], explicit Euler, Leap-Frog [45], Heun, implicit Theta-Scheme,
and Gear [31]. Table 23.2 shows measurements of time steps and computing
times for various integration methods. Our measurements suggest that Verlet
and Leap-frog can be computed very efficiently, while providing a reasonable
time step. Although the fourth order Runge-Kutta scheme allows for a larger
time step, its computation is significantly more expensive. Two classes of in-
tegration schemes, namely predictor-corrector methods (Gear) and implicit
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Table 23.2. Maximum time step and computing time for various integration
schemes. The last column shows the ratio of time step and computing time for
one integration step. This ratio can be interpreted as performance measure of an
integration method.

Method Time step comp. Time Ratio
[ms] [ms]

Verlet 3.1 7.3 0.427
Leap-frog 3.1 7.3 0.426
RK 2 4.9 14.3 0.342
vel. Verlet 2.5 7.3 0.341
Beeman 2.5 7.4 0.337
Heun 4.2 18.4 0.229
expl. Euler 1.5 7.3 0.205
RK 4 6.3 33.0 0.191

methods (Theta), have been implemented and considered in the comparison,
but are not listed in Table 23.2. Both methods suffer from drawbacks that are
related to our deformable model and to our application.

Although the Gear scheme is very efficient and robust, we do not consider
it in our environment. This is due to the fact that the Gear scheme has to be
re-initialized after collision handling which significantly reduces the stability
of the method. Since collision handling is an important component in our
environment, Gear is not appropriate for our application. Implicit integration
schemes have shown to be very robust in physically-based simulations [9, 20,
21,37,94]. They are very popular, since they allow for large time steps. On the
other hand, they are expensive to compute. Implicit methods require to solve a
sparse linear system per integration step. Further, computing and storing the
system matrix causes additional costs. In our application with comparatively
complex objects with several thousand degrees of freedom, these costs are
significant. Although, we use an efficient Conjugate Gradient algorithm with
only a few iterations (5–30), we do not achieve computing times faster than
200 ms in our test scenario. This is not appropriate for our application.

A second aspect is the combination of dynamically deforming objects and
collision handling. Larger time steps cause larger penetration depths of objects
which are difficult to resolve. Robust collision response commonly requires a
small intersection volume of two colliding objects. This is difficult to guaran-
tee, if the time step is too large. In some of the experiments, collision handling
is employed. In these experiments, the limiting factor for the time step is not
the numerical integration, but our collision handling scheme.

From our perspective, the optimal numerical integration scheme does not
depend on the size of the time step. Instead, it depends on the underlying
model, on the application, and on the complexity of the data structures. Al-
though implicit integration methods are very useful in many applications, we
propose to use Verlet or Leap-Frog for our specific problem.
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23.3.4 Results

In this section, we describe some applications of our deformable model. Exam-
ples with elastically deforming volumetric tetrahedral meshes are given and
it is shown how to apply the approach to interactive simulations of cloth and
discrete shells. Further, the incorporation of plasticity into the deformable
model is described and it is illustrated how to incorporate the variation of
stiffness constants in the animation of melting or fluid-like objects. Finally,
an overview of all parameters and the performance of the simulations are
given.

Elastic Deformation

We have integrated our model into a simulation environment for deformable
objects. In this environment, our tetrahedral meshes can be coupled with high-
resolution surface meshes in the spirit of FFD [18,63]. Figure 23.2 illustrates
this visualization technique. Further, collisions between deformable objects
can be handled based on a spatial hashing approach presented in Section 23.4.
If more than one deformable tetrahedral mesh is used, this collision handling
scheme is employed.

Figure 23.3 shows a sequence of interactive cloth simulation to illustrate
that our approach can also be employed to interactively animate thin plates
and discrete shells.

Plastic Deformation

In addition to elastic deformation, the proposed model can also handle plastic
deformation as introduced in [69,87]. Therefore, the deformation of an object
is decomposed into elastic and plastic deformation, whereas the plastic de-
formation does not contribute to the deformation energy of an object. In our
model, this can be represented employing the energy ED which represents

Fig. 23.2. A low-resolution tetrahedral mesh and a high-resolution surface mesh of
a snake. Deformation is computed for the tetrahedral mesh, while the high-resolution
mesh is visualized.
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Fig. 23.3. Sequence of a deformable cloth model interacting with a rigid sphere.

distance differences. Therefore, ED is decomposed into two components for
elasticity and plasticity:

ED = Eelastic
D + Eplastic

D (23.8)

This corresponds to a decomposition of forces FD resulting from ED:

FD = Felastic
D + Fplastic

D (23.9)

In the case of elastic deformation, ED contributes to the deformation energy
of an object and FD is applied to minimize this energy. However, if plastic-
ity is considered, only the elastic part Eelastic

D contributes to the deformation
energy. Therefore, only Felastic

D = FD − Fplastic
D is considered accordingly

in the numerical integration process. In order to model the plastic evolution,
O’Brien [69] proposes three parameters that we have implemented in our
model. The first parameter specifies a minimum value for ED that must be
met before the decomposition of elasticity and plasticity occurs. This repre-
sents the fact that small deformations are only elastic. The second parameter
provides a maximum value for Eplastic

D . This parameter controls the maximum
amount of deformation that can be stored by an object. The third parameter
specifies the rate of plastic flow. This parameter can be used to model hys-
teresis of a material. Further details on these three parameters can be found
in [69]. Plastic deformation is only considered in the distance-preserving forces.
Volume preservation and - if applied - surface area preservation is not affected
by plasticity.

Performance and Parameters

The complexity of the simulation scenarios varies from 700 tetrahedrons to
3700 tetrahedrons. Depending on the quality of the tetrahedrons and the
additional computing costs for collision handling and visualization up to 5000
tetrahedrons can be handled at interactive rates. Note, that the numerical
integration process itself is capable of handling up to 25000 tetrahedrons at
interactive rates.
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The most relevant parameter for material properties is kD. The stiffness
coefficient kV is responsible for the volume preservation. This parameter also
avoids inverted tetrahedrons. The parameter kA is only used for discrete shells
and thin plates. In the case of deformable triangle meshes it is difficult to map
values of individual parameters to certain properties such as resistance against
stretch, shearing, or bending. We have not further investigated the correla-
tion between the stiffness coefficients and material properties for triangulated
meshes. The damping coefficient kd improves the stability of dynamic simu-
lations. Damping is only applied to distance-preserving forces, thus reducing
internal oscillations of mass points. Experiments have shown that there exist
optimal values for kd. If kd is too large, energy is unintentionally added to the
simulation.

In our experiments, the time step for the integration is usually similar
to the computing time required to compute this time step. If the ratio of
both values is one, the simulation runs at real-time. The performance of the
visualization obviously depends on the complexity of our surface meshes. If
the visualization is too expensive, we usually perform several simulation steps
until the scene is rendered. However, a rendering rate of more than 20 Hz is
always guaranteed.

23.3.5 Conclusion

In this section, a versatile and robust model has been presented that can
be used to represent deformable tetrahedral meshes and deformable triangle
meshes. The model considers elastic and plastic deformation. It handles a
large variety of material properties ranging from stiff to fluid-like behavior.
The proposed model extends existing deformable modelling techniques by
incorporating efficient ways for volume and surface area preservation. The
computing efficiency of the approach is similar to simple mass-spring systems.
Thus, environments of up to several thousand deforming primitives can be
handled at interactive speed. Experiments have been described to show the
capabilities of the simulation system with integrated collision handling which
is described in the remaining part of this chapter. Ongoing work focusses on
the integration of the presented deformable model into surgery simulators.
First projects investigate potential applications in hysteroscopy simulation
and simulation of stent placement.

23.4 Collision Detection

In order to realistically process the interaction between deformable objects,
efficient collision detection algorithms are required. Further, the information
provided by the collision detection approach should allow for an efficient and
physically correct collision response (see Section 23.5).
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This section describes an algorithm for the detection of collisions and self-
collisions of deformable objects based on spatial hashing. The algorithm clas-
sifies all object primitives, i.e. vertices and tetrahedrons, with respect to small
axis-aligned bounding boxes AABB. Therefore, a hash function maps the 3D
boxes (cells) to a 1D hash table index. As a result, each hash table index
contains a small number of object primitives that have to be checked against
each other for intersection. Since a hash table index can contain more than
one primitive from the same object as well as primitives from different objects,
self-collisions and collisions of different objects can be detected. The actual col-
lision detection test computes barycentric coordinates of a vertex with respect
to a penetrated tetrahedron. This information can be employed to estimate
the penetration depth for a pair of colliding tetrahedrons. The penetration
depth can be used for further processing, such as collision response.

Using a hash function for spatial subdivision is very efficient. While spatial
subdivision usually requires one preprocessing pass through all object primi-
tives to estimate the global bounding box and the cell size, this pass can be
omitted in our approach. On the other hand, the hash mechanism does not
always provide a unique mapping of grid cells to hash table entries. If different
3D grid cells are mapped to the same index, the performance of the proposed
algorithm decreases. In order to reduce the number of index collisions, we
have optimized the parameters of the collision detection algorithm that have
an impact on this problem, namely the characteristics of the hash function,
the hash table size, and the 3D cell size. This section investigates these factors.

Further, this section presents experimental results that have been obtained
using physically-based environments for deformable objects with varying geo-
metrical complexity. Environments with up to 20000 tetrahedrons can be
tested for collisions and self-collisions in real-time on a PC. The remainder
of this section on collision detection is organized as follows. First, the pro-
posed algorithm is explained. The relevant parameters of the algorithm are
introduced and their influence on the performance is investigated. Results and
experiments are described. Finally, limitations of our approach are discussed,
followed by directions for ongoing research.

23.4.1 Method

The collision detection algorithm implicitly subdivides R
3 into small AABBs.

In a first pass, all vertices of all objects are classified with respect to these small
3D cells. In a second pass, all tetrahedrons are classified with respect to the
same 3D cells. If a tetrahedron intersects with a cell, all vertices that have been
associated with this cell in the first pass, are checked for interference with this
tetrahedron. The actual intersection test computes barycentric coordinates of
a vertex with respect to a tetrahedron in order to estimate, whether a vertex
penetrates a tetrahedron.
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The consistent processing of all object primitives enables the detection of
collisions and self-collisions. If a vertex penetrates a tetrahedron, a collision
is detected. If the vertex and the tetrahedron belong to the same object, a
self-collision is detected. If a vertex is part of a tetrahedron, the intersection
test is omitted.

Spatial Hashing of Vertices: In the first pass, the positions of all vertices are
discretized with respect to a user-defined cell size. Therefore, the coordinates
of the vertex position (x, y, z) are divided by the given grid cell size l and
rounded down to the next integer (i, j, k): i =  x/l!, j =  y/l!, k =  z/l!.
The hash function hash maps the discretized 3D position (i, j, k) to a 1D
index h and the vertex and object information is stored in a hash table at
this index h: h = hash(i, j, k). In addition to generating a hash value for each
vertex, this first pass also computes the AABBs of all tetrahedrons based on
their current deformed state.

Spatial Hashing of Tetrahedrons: While the first pass has considered all
vertices to build the hash table and to update the AABBs of the tetrahe-
drons, the second pass of the algorithm traverses all tetrahedrons. First, the
minimum and maximum values describing the AABB of a tetrahedron, are
discretized. Again, these values are divided by the user-defined cell size and
rounded down to the next integer. Second, hash values are computed for all
cells affected by the AABB of a tetrahedron. Therefore, all cells are traversed
from the discretized minimum to the discretized maximum of the AABB (see
Figure 23.4). All vertices found at the corresponding hash table index are
tested for intersection.

Intersection Test: If a vertex p and a tetrahedron t are mapped to the same
hash index and p is not part of t, a penetration test has to be performed. The
actual intersection test consists of two steps. First, p is checked against the
AABB of t which has been updated in the first pass. If p penetrates the AABB

Fig. 23.4. Hash values are computed for all grid cells covered by the AABB of a
tetrahedron. The tetrahedron is checked for intersection with all vertices found at
these hash indices.
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of t, the second step actually tests, whether p is inside t. This test computes
barycentric coordinates of p with respect to a vertex of t.

23.4.2 Parameters

In this section, we investigate the parameters of the presented algorithm. The
characteristics of the hash function, the size of the hash table, the size of
a 3D cell for spatial subdivision, and the actual intersection test influence
the performance of the algorithm. We have optimized all these aspects of the
algorithm.

Hash Function

In the first pass of the algorithm, hash values are computed for all discretized
vertex positions. These hash values should be uniformly distributed to guaran-
tee an adequate performance of the algorithm. The hash function has to work
with vertices of the same object that are close to each other, and with vertices
of different objects that are farther away. We have tested several hash func-
tions in our implementation, basically variants of additive and rotating hash
functions. The hash function gets three values, describing a vertex position
(x, y, z), and returns a hash value hash(x,y,z) = ( x p1 xor y p2 xor z p3) mod
n, where p1, p2, p3 are large prime numbers, in our case 73856093, 19349663,
83492791, respectively. The value n is the hash table size. The function can
be evaluated very efficiently and produces a comparatively small number of
hash collisions for small hash tables. The quality of the hash function is less
important for larger hash tables.

Hash Table Size

The size of the hash table significantly influences the performance of the colli-
sion detection algorithm. Experiments indicate that larger hash tables reduce
the risk of mapping different 3D positions to the same hash index. Therefore,
the algorithm generally works faster with larger hash tables. On the other
hand, the performance slightly decreases for larger hash tables due to mem-
ory management. Figure 23.5 and Figure 23.6 show the performance of our
algorithm for two test scenarios with a varying hash table size. If the hash
table is significantly larger than the number of object primitives, the risk of
hash collisions is minimal. Although it is known that hash functions work
most efficiently if the hash table size is a prime number [19], Figure 23.5 and
Figure 23.6 show performance measurements with hash table sizes of 99, 199,
299 and so on.

Our implementation of the hash table does not require a reinitialization
in each simulation step which would reduce the efficiency in case of larger
tables. To avoid this problem, each simulation step is labeled with a unique
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Fig. 23.5. Performance of the collision detection algorithm for two deformable
objects with an overall number of 5898 vertices and 20514 tetrahedrons with varying
hash table size of 99, 199, 299 and so on. The grid cell size is set to the average edge
length of all tetrahedrons.
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Fig. 23.6. Performance of the collision detection algorithm for 100 deformable
objects (see Figure 23.15) with an overall number of 1200 vertices and 1000 tetra-
hedrons with varying hash table size of 99, 199, 299 and so on. The grid cell size is
set to the average edge length of all tetrahedrons.

time stamp. If the first pass stores vertices in a hash table cell with outdated
time stamp, the time stamp is updated and the cell is reset before new vertices
are inserted. If the time stamp is up to date, new vertices are appended to
the hash table cell. When the second pass generates hash indices for the
tetrahedrons, the current time stamp is compared to the time stamp found
in the hash table entry. If the time stamps differ, the information in the hash
table is outdated and no intersection tests have to be performed. Therefore,
no reinitialization of the hash table has to be performed during the simulation
which would be comparatively costly for larger hash tables.
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Grid Cell Size

The grid cell size which is used for spatial hashing, influences the number of
object primitives that are mapped to the same hash index. In case of larger
cells, the number of primitives per hash index increases and the intersection
test slows down. If the cell size is significantly smaller than a tetrahedron,
the tetrahedron covers a larger number of cells and has to be checked against
vertices in a larger number of hash entries. The measurements in Figures 23.7
and 23.8 indicate that a grid cell should have the size of the average edge
length of all tetrahedrons to achieve optimal performance. The graphs illus-
trate that the grid cell size has a more significant impact on the performance
than hash table size or hash function.
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Fig. 23.7. Performance of the collision detection algorithm for two deformable
objects with an overall number of 5898 vertices and 20514 tetrahedrons with varying
grid cell size. Hash table size is 9973.
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Fig. 23.8. Performance of the collision detection algorithm for 100 deformable
objects with an overall number of 1200 vertices and 1000 tetrahedrons with varying
grid cell size. Hash table size is 4999.
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Intersection Test

Now we have to detect, whether a vertex p penetrates a tetrahedron t, whose
vertices are at positions x0,x1,x2,x3. Barycentric coordinates with respect to
x0: We express p in new coordinates β = (β1, β2, β3)T with respect to a coor-
dinate frame, whose origin coincides with x0 and whose axis coincide with the
edges of t adjacent to x0: p = x0+Aβ,, where A = [x1 − x0,x2 − x0,x3 − x0]
is a 3 by 3 dimensional matrix. The coordinates β of p in this new coordinate
frame are: β = A−1(p − x0). Now, p lies inside tetrahedron t, if β1 ≥ 0,
β2 ≥ 0, β3 ≥ 0 and β1 + β2 + β3 ≤ 1.

23.4.3 Time Complexity

Let n be the number of primitives (vertices and tetrahedrons). To find all
intersecting vertex-tetrahedron pairs a naive approach would test all vertices
against all tetrahedrons resulting in a time complexity of the order of O(n2).
The goal of our approach is to reduce this complexity to O(n). Since a defor-
mation algorithm needs to process all the primitives at each time step, linear
time complexity for collision detection does not decrease its performance sig-
nificantly.

During the first pass, all vertices are inserted into the hash table. This pass
takes O(n) time. First, the hash table does not need to be initialized, so the
time is independent of the hash table size. Second, for each vertex, the hash
function can be evaluated and a vertex reference can be added to the hash
cell in O(1) time. In the second pass, for all tetrahedrons all vertices in a local
neighborhood are tested for collision. The time complexity of this pass is of
the order of O(n · p · q) where p is the average number of cells intersected by
a tetrahedron and q is the average number of vertices per cell. If the cell size
is chosen to be proportional to the average tetrahedron size, p is a constant.
If there are no hash collisions, the average number of tetrahedrons per cell is
constant too and so is q, since there are at most four times as many vertices as
tetrahedra in a cell. With both, p and q being constant, the time complexity of
the algorithm turns out to be linearly dependent on the number of primitives.

23.4.4 Results

We have performed experiments with various setups of deformable objects
(see Table 23.3). The dynamic behavior of all deformable objects is computed
with the constraint-based approach described in Section 23.3. Experiments
indicate that the detection of all collisions and self-collisions for dynamically
deforming objects can be performed with 15 Hz with up to 20k tetrahedrons
and 6k vertices on a PC, Intel Pentium 4, 1.8 GHz. The performance is in-
dependent from the number of objects. It only depends on the number of
object primitives. The performance varies slightly during simulations due to
the changing number of hash collisions and due to a varying distribution of
hash table elements.
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Table 23.3. Performance of the collision detection algorithm. Average collision
detection time, minimum, maximum, and standard deviation for 1000 simulation
step are given.

Objects Tetras Vertices Ave [ms] Min [ms] Max [ms] Dev [ms]

100 1000 1200 4.3 4.1 6.5 0.24
8 4000 1936 12.6 11.3 15.0 0.59
20 10000 4840 30.4 28.9 34.4 1.25
2 20514 5898 70.0 68.5 72.1 0.86
100 50000 24200 172.5 170.5 174.6 1.08

23.4.5 Discussion

The presented algorithm performs two passes on the objects, even though it
would be sufficient to only perform one pass which computes hash values for
all tetrahedrons. In this case, each hash table entry contains tetrahedrons that
could intersect. We have implemented this approach, but found it less efficient
compared to the two-pass approach. While vertex positions are mapped to
the hash table exactly once, tetrahedrons are usually mapped to several hash
indices which leads to a larger number of elements in the hash table, thus
decreasing the performance of the algorithm.

The comparison of the performance with other existing collision detection
approaches is difficult. There exist numerous public domain libraries, such
as RAPID [35], PQP [58], and SWIFT [25]. However, these approaches are
not optimized for deformable objects. They work with data structures that
can be pre-computed for rigid bodies, but have to be updated in case of
deformable objects. The collision detection approach has been implemented
based on tetrahedrons. However, it is not restricted to tetrahedrons and could
handle other object primitives as well by simply replacing the intersection test.
Since the algorithm provides the exact position of a vertex inside a penetrated
tetrahedron, we can employ this information for collision response which is
described in the following section. If we assume that a face or a vertex of the
penetrated tetrahedron is part of the object surface, we can easily derive the
penetration depth which allows for a correct collision response.

23.4.6 Conclusion

We have presented a method for detecting collisions and self-collisions of dy-
namically deforming objects. Instead of computing the global bounding box
of all objects and explicitly performing a spatial subdivision, we propose to
use a hash function that maps 3D cells to a hash table, thus realizing a very
efficient, implicit spatial subdivision. The actual vertex-in-tetrahedron test is
based on Barycentric coordinates. It provides information that can be used
for physically based collision response. We have investigated and optimized
the parameters of our approach. Experiments, performed with various test
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scenarios, show that environment of up to 20k tetrahedrons can be processed
in real-time, independent from the number of objects.

23.5 Collision Response

In order to realistically simulate the behavior of colliding objects, an appro-
priate collision response has to be considered. One idea commonly used in
discrete-time simulations is to generate forces which eventually separate col-
liding objects. These response or penalty forces are computed for penetrating
object vertices as a function of their penetration depth which represents the
distance and the direction to the surface of the penetrated object. In case of
deformable objects, this force computation is intended to reflect the fact that
real colliding objects deform each other. The deformation induces forces in the
contact area which are approximated with penetration depth approaches in
virtual environments. Response forces commonly consider additional features
such as friction which is computed as a function of the relative velocity of
colliding structures and their penetration depth.

Penetration depth approaches work very well for sufficiently dense sampled
surfaces and in case of small penetrations. However, in interactive discrete-
time simulations with discretized object representations, these two require-
ments are rarely met. Depending on the size of the simulation time step, large
penetrations can occur which result in the computation of non-plausible pen-
etration depths and directions. Figure 23.9 illustrates this problem. Further,
discrete surface representations can result in discontinuous penetration direc-
tions. These discontinuities illustrated in Figure 23.10 degrade the stability of
the response process.

In this section, we present a method to compute consistent penetration
depths and directions for colliding tetrahedral meshes with triangulated sur-
faces. In contrast to approaches that only consider one closest surface feature,

Fig. 23.9. The presented approach addresses the problem of non-plausible penetra-
tion depth estimation. Instead of strictly computing minimal distances as illustrated
in the left-hand image, the approach computes consistent penetration distances as
illustrated in the right-hand image. Therefore, collision response artifacts in discrete-
time simulations are significantly reduced.
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Fig. 23.10. The presented approach also addresses the problem of discontinuous
penetration depths for small displacements of penetrating vertices as illustrated in
the left-hand image. Instead, smooth and plausible approximations are computed
which reduce artifacts in the collision response scheme.

the presented approach considers a set of close surface features to signifi-
cantly reduce discontinuities of estimated penetration depth directions for
small displacements of penetrating vertices. Further, a propagation scheme is
introduced to approximate the penetration depth and direction for vertices
with deep penetrations. This significantly reduces artifacts of the penetration
direction in case of large penetrations.

The method works with any underlying deformation model and any con-
tact model that computes penalty forces based on a given penetration depth.
The scheme requires a volumetric collision detection approach. Although the
method is primarily intended to work with deformable objects, it can also
be applied to rigid bodies. The method has been integrated into a collision
response scheme for dynamically deforming tetrahedral meshes. Experiments
show that the scheme significantly reduces artifacts compared to standard
penetration depth approaches. It provides a plausible collision response for
a wide range of simulation time steps even in case of large object penetra-
tions. The scheme works with objects of any geometrical complexity, but is
especially advantageous for coarsely sampled objects.

23.5.1 Method

This section provides an overview of the proposed algorithm followed by a
detailed description of its four stages.

Algorithm Overview

The method takes a set of potentially colliding tetrahedral meshes as input
and computes consistent n-body penetration depths and directions for all
colliding mesh points. The method proceeds in four consecutive stages:

Stage 1 detects all colliding points in the scene based on a spatial hash-
ing approach. Stage 2 identifies all colliding points adjacent to one or more
non-colliding points as border points. Further, it detects all intersecting edges
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that contain one non-colliding point and one border point. The exact inter-
section point and corresponding surface normal of the penetrated surface are
computed for each intersection edge. Stage 3 approximates the penetration
depth and direction for each border point based on the adjacent intersection
points and surface normals obtained from the second stage. Stage 4 propa-
gates the penetration depth and direction to all colliding points that are not
border points.

As a result of this algorithm, all colliding mesh points in the scene have
an appropriate penetration depth and direction. This information can be used
as input to any penalty-based collision response scheme. For our experiments,
we use linear response forces. Further, surface friction is considered.

Point Collisions

The first stage detects all object points that collide with any tetrahedral mesh
in the scene as described in Section 23.4. At the end of the first stage, all mesh
points in the scene are either classified as colliding points or non-colliding
points (see Figure 23.11).

Edge Intersections

The second stage identifies all colliding points with at least one adjacent non-
colliding point as border points. The underlying idea is to classify colliding
points with respect to their penetration depth. Based on this information, the
second stage finds all intersecting edges that contain one non-colliding point
and one border point. Moreover, the exact intersection point of each of those
edges with the surface along with the corresponding surface normal of the
penetrated mesh is computed. In order to efficiently compute this information,
the original spatial hashing approach has been extended to handle collisions
between edges and surfaces.

Fig. 23.11. The first stage classifies all mesh points either as colliding points (black)
or non-colliding points (white).
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Fig. 23.12. The second stage finds all intersecting edges (red) of the tetrahedral
meshes that contain one non-colliding point (white) and one border point (black).
Further, the exact intersection point and the corresponding surface normal are com-
puted for each intersection edge.

In a first step, all intersecting edges are classified with respect to the hash
grid cells by using an efficient voxel traversal technique, e.g. [2]. In a second
step, a simplified box-plane intersection test [36] is performed to classify all
mesh faces. If a face intersects with a hash grid cell, all associated edges
of the cell are checked for intersection with the respective face. The actual
intersection test computes Barycentric coordinates of the intersection point
in order to detect, whether the edge intersects the face or not. In addition,
the Barycentric coordinates can also be used to interpolate a smooth surface
normal based on the three vertex normals of the face. This results in a smooth
approximation of the penetration direction. Each edge can possibly intersect
with more than one mesh face. Therefore, only the intersection point nearest
to the non-colliding point of the edge is considered in further stages. At the end
of the second stage, each border point is adjacent to one or more intersection
edges. Further, all intersecting edges have an exact intersection point and a
corresponding surface normal (see Figure 23.12).

Penetration Depth and Direction

The third stage approximates the penetration depth and direction for all bor-
der points based on the adjacent intersection points and surface normals com-
puted in the second stage.

First, the influence on a border point is computed for all adjacent intersec-
tion points. This influence is dependent on the distance between an intersec-
tion and a border point. The respective weighting function has to be positive
for all nonzero distances and increasing for decreasing distances. Further, it
has to ensure convergence to the penetration depth information with respect
to a intersection point xi if a colliding point p approaches xi. This leads to
the following weighting function for the influence ω(xi,p):
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ω(xi,p) =
1

‖xi − p‖2 (23.10)

with xi denoting an intersection point and p denoting the border point. The
weighting function does not have to be normalized, since this would not avoid
any normalization steps in further processing. The weight is undefined for
coinciding points. However, the first stage ensures that there is no collision
detected in this case. The penetration depth d(p) of a border point p is now
computed based on the influences resulting from Equation (23.10):

d(p) =
∑k

i=1(ω(xi,p) · (xi − p) · ni)∑k
i=1 ω(xi,p)

(23.11)

with ni denoting the unit surface normal of the penetrated object surface
at the intersection point. The number of intersection points adjacent to the
border point p is given by k. Finally, the penetration direction r̂(p) of a border
point is computed as a weighted average of the surface normals

r̂(p) =
∑k

i=1(ω(xi,p) · ni)∑k
i=1 ω(xi,p)

(23.12)

and the normalized penetration direction r(p) is obtained as

r(p) =
r̂(p)

‖r̂(p)‖ . (23.13)

At the end of the third stage, consistent penetration depths and directions
have been computed for all border points (see Figure 23.13). In contrast to
existing penetration depth approaches that consider only one distance, the
weighted averaging of distances and directions provides a continuous behavior
of the penetration depth function for small displacements of colliding points
and for colliding points that are adjacent to each other. Non-plausible pen-
etration directions due to the surface discretization of the penetrated object
are avoided.

Fig. 23.13. The third stage approximates the penetration depth and direction for
all border points based on the adjacent intersection points and surface normals.
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Fig. 23.14. Stage 4 propagates the penetration depth and direction to all colliding
points that are not border points.

Propagation

Based on the computed penetration depth information for border points, the
fourth stage propagates the information to all other colliding points that are
not border points (see Figure 23.14). This is in contrast to existing pene-
tration depth approaches that compute the penetration depth for all points
independently. The idea of the propagation scheme is to avoid non-plausible
penetration depths in case of large penetrations.

The propagation is an iterative process that consists of the following two
steps: First, the current border points are marked as processed points. Sec-
ond, a new set of border points is identified from all colliding points that are
adjacent to one or more processed points. The iteration is aborted, if no new
border points are found. Otherwise, the penetration depth and direction for
the new border points is computed based on the information available from
all adjacent processed points. A weighting function is used to compute the
influence μ(pj ,p) of an adjacent processed point pj on a border point p:

μ(pj ,p) =
1

‖pj − p‖2 . (23.14)

Based on the influences μ(pj ,p), the penetration depth d(p) of a border point
p is computed as:

d(p) =

∑l
j=1(μ(pj ,p) · ((pj − p) · r(pj) + d(pj)))∑l

j=1 μ(pj ,p)

with r(pj) denoting the normalized penetration direction of the processed
point pj and d(pj) denoting its penetration depth. The number of processed
points adjacent to the border point p is given by l.

Finally, the penetration direction r̂(p) is computed as a weighted average
of the penetration direction of the processed points adjacent to the border
point as
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Fig. 23.15. The algorithm computes consistent penetration depths and directions
for all colliding points.

r̂(p) =

∑l
j=1 μjrj∑l
j=1 μj

. (23.15)

and normalized

r(p) =
r̂(p)

‖r̂(p)‖ . (23.16)

At the end of the fourth stage, all colliding points have a consistent penetration
depth and direction assigned (see Figure 23.15).

23.5.2 Results

We have integrated our method in a simulation environment for deformable
objects based on [89]. Various experiments have been carried out to com-
pare the quality and performance of the proposed method with the standard
closest-feature approach. All test scenarios presented in this section have been
performed on a PC Pentium 4, 3 GHz, GeForce FX Ultra 5900 GPU.

In a first test, two deformable cubes consisting of 1250 tetrahedrons are
simulated. Large penetrations between the objects occur due to the high rela-
tive velocity and the discrete-time simulation. As illustrated in Figure 23.16,
the standard approach fails to compute a consistent penetration depth. This
results in a non-plausible collision response. Employing our approach to the
same scenario results in consistent, plausible penetration depth information.

The second scenario simulates 120 deformable spheres consisting of 2400
tetrahedrons. Starting from a random position, they build a stack of spheres.
Computing the penetration depth with the standard approach leads to heavy
artifacts. The spheres tend to stick together due to inconsistent handling
of penetrated object points. In this case, inconsistent penetration depths
and response forces cause non-plausible equilibrium states. By applying our
approach, these response artifacts are avoided. Figure 23.17 illustrates this
second experiment. Our approach scales linearly with the number of colliding
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Fig. 23.16. Two colliding deformable cubes. The standard closest-feature approach
shown in the first row causes non-plausible penetration depth information in case of
large penetrations. This causes artifacts in the collision response scheme which are
eliminated with the presented approach illustrated in the second row.

Fig. 23.17. 120 colliding deformable spheres. The first three images illustrate the
sticking artifact of the standard penetration depth approach. These non-plausible
equilibrium states are avoided with the presented approach as shown in the three
images on the right-hand side.

points. In all experiments presented in this section, an average time of 35 μs
is needed for resolving a colliding point. Most time is spent for detecting the
edge intersections required by the second stage of the method. We experi-
enced similar computing costs to calculate the closest feature in the standard
approach.

23.5.3 Discussion

While the presented approach eliminates many collision response artifacts
inherent to existing approaches, there still exist configurations where a plau-
sible collision response can not be computed. If a colliding object is entirely
enclosed by the penetrated object, the algorithm presented in this section does
not compute any penetration depth, since there are no border points. The res-
ponse scheme would not generate any forces until at least one object point
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leaves the penetrated object. In contrast, standard approaches would compute
penetration depth information for all object points and probably resolve the
collision in an arbitrary direction. However, if at least one object point of a
colliding object is outside the penetrated object, the presented approach is
likely to compute plausible and consistent penetration depth information for
all colliding points. Further, there exist cases of objects crossing each other,
where neither the existing nor the proposed approach are able to compute
useful penetration depth information.

The presented approach does not compute the penetration depth accord-
ing to its definition. Instead of computing the shortest distance to the surface
of the penetrated object, the approach approximates the penetration depth
only for points close to the surface. For all colliding non-border points, the
depth is propagated from border points without considering the penetrated
object. This supports consistency, but leads to results that can differ signifi-
cantly from the actual penetration depth according to the definition. However,
this disregard of the definition eliminates many artifacts in the respective col-
lision response scheme. Further, if colliding points converge to the surface of
a penetrated object, the computed penetration depth converges to the exact
penetration depth.

23.5.4 Conclusions

We presented an approach to consistent penetration depth estimation. In
discrete-time simulations, the method eliminates many collision response arti-
facts inherent to existing penetration depth approaches. Instead of computing
only the closest surface feature for colliding points, a set of surface features is
considered to avoid dynamic discontinuities of the penetration depth function.
Further, the penetration depth is only computed for colliding points close to
the surface, whereas consistent information is propagated to colliding points
with larger penetrations. In general, the algorithm is faster than standard
penetration depth approaches due to the propagation process. Experiments
with dynamically deforming objects have illustrated some advantages of the
consistent penetration depth estimation compared to existing methods.

23.6 Interactive Simulation of Interacting Deformable
Objects

The combination of the presented approaches for deformable modelling, col-
lision detection and penetration depth estimation is surprisingly straightfor-
ward and a first application in the area of computational medicine can be
seen in Figure 23.18. All approaches work with tetrahedral meshes. While
the deformable model and the collision detection also work with other object
primitives, the penetration depth approach is limited to volumetrically sam-
pled objects, since the depth propagation does not work for objects that are
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Fig. 23.18. A first prototype of a hysteroscopy simulator is shown. Seven deformable
polyps are placed into the cavity of a deformable uterus. With the presented simu-
lation components, the objects and their interaction can be simulated at interactive
rates.

represented with surface meshes. All approaches provide information that is
necessary for the subsequent component. The mass-point positions are gov-
erned by the deformable model. These positions are employed by the colli-
sion detection stage. Further, the collision detection method estimates pairs
of penetrating mass points and penetrated tetrahedrons. This information is
used by the last component that computes the actual penetration depth of a
point. Based on the penetration depth, a penalty force is computed that is
passed to the deformable model as an external force. All simulation compo-
nents can handle comparatively large time steps. While the penetration depth
approach is particularly appropriate for large time steps, the explicit numer-
ical integration scheme that is employed to compute the object dynamics is
only conditionally stable. Nevertheless, the integration method is not the lim-
iting factor for the time step. Instead, the time step is limited by the discrete
collision detection scheme that misses collisions in case of large relative object
velocities.

23.7 Conclusion

This chapter has illustrated approaches for the efficient processing of dynam-
ically interacting deformable objects. While specific solutions to three simu-
lation components have been considered, there is still extensive potential for
future research. In terms of deformable modelling, combinations of efficient
geometrically motivated [68] and accurate physically based models [67] might
be investigated in order to enable the balancing of performance and accuracy
within the simulation. In terms of collision detection, continuous approaches
might enable larger simulation time steps and GPU-based approaches might
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improve the overall simulation performance [90]. Further, it might be useful
to employ the deformation model in order to accelerate the collision detec-
tion [79]. In the area of collision response, the consistent penetration depth
approach might be used to determine contact surface information which would
allow for physically correct collision handling [78, 81]. Additionally, further
simulation components could be investigated, e.g., mesh generation [80] and
geometric constraints [34]. Since human motion is not only governed by de-
formable objects, rigid object dynamics and the two-way coupling of rigid and
deformable solids might be investigated.
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Summary. The artistic performance literature has much to say about expressive
human movement. This chapter argues that powerful, expressive animation tools
can be derived from the classic lessons and best practices in this field. A supporting
software system for creating expressive character animation is presented that takes
advantage of these lessons. To this end, an analysis of the literature was conducted
and a set of key aspects of expressive movement were synthesized. To validate the
approach, a subset of these aspects is represented computationally as movement
properties, or properties for short. These properties provide a set of handles and
language for expressing movement. They can be used to write character sketches,
which are executable descriptions of a particular character’s movement style. They
can also be used to edit and refine an animation. A semantics is provided that
describes how the software framework allows these varied properties to be combined
in specifying an animation. Examples of character sketches and edits are shown on
movements of a standing character.

24.1 Introduction

By analogy to other fields of scholarly research, we can view researchers
interested in understanding and manipulating motion as starting from either
primary or secondary sources. Primary approaches begin with raw motion
data, while secondary approaches rely on analyses conducted by other re-
searchers that in turn have their ultimate bases in actual motion. Much of the
work in this volume relies on primary approaches, and often does not require
an exlicit understanding of motion. For instance, Theobalt et al. (Chapter 22)
capture motion from video and recreate the motion in novel lighting condi-
tions. Elgammal et al. (Chapter 2) use learning techniques to construct im-
plicit models of motion applied to tasks like generation, recognition and style
transfer. In a step closer to secondary techniques, Mueller et al. (Chapter
20) explicitly identify features of movement and use these to identify similar
motions in databases.
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Our work seeks to create better tools for expressive character animation,
and relies on explicit, secondary sources to do this. The process followed was
to first find an analysis of key expressive aspects of movement. There are
numerous potential sources, including psychology, biomechanics, physics, and
direct experience. We focus on the performing arts literature. Based on an
analysis from this field, we synthesize computational models. Specifically, we
build concrete representations of the ideas presented in the literature. These
models are then combined within a software framework and used to generate
motion.

The advantage of working from secondary sources is that experts in a rele-
vant domain, namely expressive movement, have already identified the salient
aspects of movement, the “handles”, as it were, that are necessary for people
to manipulate in order to construct expressive movement. We are ultimately
interested in modelling motion that reflects personality, mood and style, and
this literature identifies the primitives from which these qualities may be con-
structed. Providing these handles directly to animators offers a motion control
workflow that is better aligned to their traditional and effective practice. The
disadvantage of secondary approaches is that they are constructive in nature:
the motion must be built from scratch, which can be a challenging task.

The remainder of this chapter describes a software system built to model
expressive motion, based on ideas from the arts literature. The system can
produce either kinematic animation or dynamic animation using a forward
simulation/controller framework. In our prototype, we focus on a limited range
of movement of a standing character: posture adjustments, gesturing, balance
shifts and crouching. This range of motion is both reasonably stable from a
dynamics perspective and expressively rich.

The important aspects of movement identified from the arts literature are
encapsulated in small pieces of code called movement properties, or properties
for short. These properties see expression through a base representation that
defines a small set of constructs, and related commands, that are used to
generate the motion. Algorithms have been developed that allow an artist
to specify various high-level properties for a movement sequence that will
then be combined into a single base representation and used to generate the
character’s motion.

These properties can be seen as defining a language by which the anima-
tor, or a high level character system, can express ideas about motion. This
language is used to write character sketches, brief descriptions of a person’s
movement style that are applied to all the actions specified for a character.
Not only do these character sketches allow an animator to move quickly to a
particular portrayal of a character, perhaps more importantly, they allow an
animator to explore different movement possibilities. By changing character
sketches, an animator can very quickly try a different take on a movement
sequence. Additional movement properties can then be applied on top of a se-
lected sequence, allowing the animator to refine the motion. We believe these
twin properties of exploration and refinement are particularly important in
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an artistic workflow. Examples shown below will demonstrate how a single
movement sequence could be performed in considerably different ways solely
through the application of character sketches and animator edits: in a neutral
fashion; in a languid, sensual style; in a dejected manner; and in the manner
of an old, tired man.

The chapter is organized as follows: Section 24.2 describes related techni-
cal work. Section 24.3 describes the different levels of information stored in
the system and Section 24.4 describes how an animator works with the sys-
tem. Section 24.5 introduces the performing arts literature and Sections 24.6
through 24.8 present specific ideas from the arts literature followed imme-
diately by details of how they are represented in the system. This serves to
illustrate the mapping between movement ideas and their corresponding com-
putational representation. Section 24.9 provides examples of how the system
supports both exploration and refinement. System details related to motion
specification are formalized in Section 24.10 followed by details on motion
generation in Section 24.11 and some discussion in the final section.

24.2 Background

Expressive or stylistic aspects of motion have seen increasing interest in the
computer animation field in recent years. These approaches can be grouped
based on how they derive their “understanding of motion”.

24.2.1 Direct Reuse of Data

Some approaches do not develop a model of motion at all, but directly reuse
captured motion by interpolating and extrapolating a set of sample motions.
These approaches generally produce high quality results as they reuse real
motion, but they provide limited control and flexibility to animators. The
range of motions is defined by the convex hull of what is captured plus a
small neighbourhood about which extrapolation produces reasonable results.
Examples of these approaches include “Verbs and Adverbs” of Rose et al. [26]
for locomotion and the reaching system of Wiley and Hahn [36].

24.2.2 Models from Data

A second approach builds models of certain aspects of motion from captured
data. These approaches have been used to generate some impressive anima-
tions. Animator control is generally better than in the direct reuse approaches,
but remains limited. One reason for this is the extracted models are gener-
ally not human understandable and editable. For instance, motion classes
may be defined by very large vectors whose components do not have intuitive
meanings.
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Examples of this approach include: motion transformation [2,35] in which
the difference between motion done in a neutral style and an expressive style is
used to compute a transform that can then be applied to novel motions; style-
machines [5], in which different dance styles are learnt from motion capture
data allowing the style to be applied to new motion; and style translation [12]
in which motion done in one style can be mapped to another style learnt
from training data. Pullen and Bregler [25] take a different approach, extract-
ing correlation information and high frequency data from motion capture
data and using the correlation data to complete a roughly defined keyframe
animation and the high frequency data to add “texture” or nuance to the
motion. Liu et al. [18] use a learning approach to extract the parameters for a
physical model from motion capture data with a particular style and then use
spacetime optimization to synthesize variations on the motion with different
physical conditions.

24.2.3 Procedural Approaches

Procedural approaches explicate a list of movement properties from a variety
of sources such as direct experience, physics, the arts literature or psychol-
ogy, and then hand craft computational representations of them. These ap-
proaches are synthetic in nature, in that the final motion is built up from the
modelled properties, rather than using motion capture data. For this reason,
more work is usually required to create appealing motion. The strength of
these approaches is that they offer much better control. Because the prop-
erties they represent are conceptually well understood, they are more easily
refined. They only rarely require complete changes to the style of the mo-
tion, and they are represented in an explicit way that may facilitate further
customization.

Our work falls into this category. Other related approaches include the
EMOTE system [6] which models Laban’s Effort-Shape analysis, and the pro-
cedural work of Perlin [24] which relies on animator knowledge and useful
interpolation primitives consisting of sinusoids and noise functions.

24.3 Levels of Representation

In moving from the conceptual definitions used in the performing arts lit-
erature to concrete requirements for software tools, we employ two levels of
representation. The first is a low-level base representation that defines the core
time-series data needed to generate motion. The second is a set of higher-level
actions and properties corresponding to the incorporation of ideas in the arts
literature that are used to provide animators with macroscopic controls. The
base representation provides the foundation upon which to define the seman-
tics of an open-ended set of such higher level motion concepts. The information
flow is shown in Figure 24.1.
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The base representation, or BRep, is derived from poses consisting of sub-
sets of a character’s Degrees of Freedom (DOFs) at particular points in time.
This makes it analogous to keyframe systems or pose-based control structures
used in hand-tuned dynamic control. We chose this representation because of
its simplicity and representational richness – keyframe representations may
be low-level and very painstaking for an animator to use, but they offer excel-
lent control over all aspects of movement. Such a representation also allows
for a more compact specification and representation of motion than would be
afforded with a frame-by-frame time series.

The base representation has a time ordered track for each DOF in the
skeleton. It may also include tracks that define signal parameters for real-
time controllers that are active in the system. These tracks can be used, for
example, to specify the desired look-at location for a gaze tracker or desired
balance point. All the tracks are populated with transition elements which
span a short period of time and specify a transition curve that takes the DOF
from its value at the start of the transition to a desired pose value. They
specify the duration of the movement and an optional hold time. The BRep
will be formalized in Section 24.10.

24.3.1 Actions

Actions define the structure of a motion. They specify how many poses are part
of the motion, if these poses are repeated, which DOFs are part of each pose, etc.
Actions are defined hierarchically. The lowest level, a DOFEntry, corresponds
to one transition element. It specifies the behaviour of one DOF for a short
period of time. Poses consist of a set of DOF Entries. Poses are grouped into
possibly repeating cycles. An action consists of a sequence of cycles.

Actions provide handles on well-defined portions of motion. For instance,
they can be used to specify a waving motion and subsequent edits can be
applied to affect the entire wave, or parts of the wave. Actions may overlap in
time if they use different DOFs. Actions define what motion is to be performed,
and what DOFs are involved in it, but not how is to be performed. The latter
is resolved by the use of specific properties, which define the value each DOF
should take on, the length of a transition, etc.

24.3.2 Properties

Properties define the content or semantics of a motion and are designed to
encapsulate particular, aesthetically relevant aspects of movement, such as
the amplitude of a motion, the amount of muscular tension, a particular class
of posture, etc. They provide a higher level language by which an animator
can specify a desired motion. For instance, an animator might want to say
“Increase the amplitude of the wave, keep the motion loose and do it with a
higher tempo”. Each of these edits can be invoked by selecting the appropriate
property.
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Table 24.1. A few of the properties defined in the system.

Property Description

SetDOFValue Specifies the value for a DOF
SetTension Adjusts the amount of joint tension during a motion
Synchronize Sets a timing relationship between two actions
SetDuration Varies the transition time to a pose
SetTransitionCurve Varies the transition envelope
VarySuccession Adjusts the relative timing of joints in a motion
VaryExtent Adjusts the amount of space a pose occupies
VaryAmplitude Adjusts the angle range covered by a motion
GenerateWeightShifts Generates idle weight shifting behaviour
SetReachShape Varies posture during a reaching motion
SetPosture Varies character posture
AdjustBalance Alters the balance point of the character
SetRhythm Coordinates actions to occur with a certain rhythm
CreateRecoil Varies all aspects of movement to recoil from point

The short pieces of code that define properties generally operate by execut-
ing commands defined by the Base Representation. Some properties require
more complex calculations and hence parameterize larger routines as discussed
below. The set of properties is open ended and extensible. Since property de-
finitions are explicitly represented in a human-comprehensible way, they can
also be modified to meet the needs of a particular animator or production.
The goal is that over time, this approach will allow a rich library of properties
to be developed. Some properties are listed in Table 24.1. Note the wide range
of granularity at which properties may act, from SetDOFValue, which con-
trols the desired value for a single degree of freedom, to CreateRecoil, which
changes a character’s pose, warps the transition function, increases his tension
and increases his tempo.

Each property accepts a small set of parameters. For instance, “look-at”
takes a location and a weighting factor that indicates how directly the char-
acter should look at the spot. Properties also define rules for combining with
other properties of the same type, allowing them to override or blend with pre-
viously applied properties. This is specified with a parameter accompanying
an edit.

Properties are grouped into three categories. Base properties directly mod-
ify a low level attribute in the BRep, such as the duration of a transition.
Composite properties generally modify higher level aspects of motion and do
this by making calls to various base and other composite properties. Gener-
ative properties add additional actions to the movement script. For example,
they can add idle motions, nervous ticks or hand flourishes at the end of a
motion.
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Properties can be applied at any level in the action hierarchy and cascade
down to all the levels below. This reduces the amount of work required
to specify the desired properties for a movement. Properties specified at
lower levels take precedence over properties specified higher up in the
hierarchy.

24.3.3 Modules

Some motions require a global view that cannot be isolated in a single prop-
erty. This is due the need for effective code reuse, avoiding repeated imple-
mentations in multiple properties, and combining constraints from multiple,
separately specified properties. We introduce modules that implement larger
units of functionality and are parameterized by properties. Two of these will
be discussed below: the body shape solver is used to calculate poses, and the
time planner is used to arbitrate between time constraints.

24.4 Workflow

The animator’s workflow follows an iterative specify-review-refine process:

1. Define new actions if needed.
2. Add actions to the performance script.
3. Specify/modify the character sketch.
4. Add/modify motion edits by applying additional properties.
5. Generate an animation.
6. Review, returning to earlier steps until satisfied.

Actions are defined in files and normally include an initial set of proper-
ties to give the action form. A library of actions has been built and can be
extended as needed (Step 1). The script has multiple tracks, each containing
a time-ordered list of actions (Step 2). For example, a script might specify
a shrug, followed by a grand sweeping gesture to the right accompanied by
a change in gaze direction. The character sketch specifies global edits, so is
normally applied first (Step 3). An edit is simply a property along with a
specific set of parameters and a label specifying the actions to which an edit
is applied. Animator edits further refine the motion (Step 4). The process of
generating the animation (Step 5) will be described in Section 24.11 below.
After reviewing the generated sequence, the animator can go back to any step
earlier in the process, make changes and regenerate the animation (Step 6).
This process is repeated until convergence. Generally, the animator will start
by making large changes via the character sketch in an exploratory phase and
then make smaller changes via edits in a refinement phase.
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24.5 Arts Literature

Most of the detailed discussion of the arts literature will be delayed to the
sections below so that artistic ideas can be presented next to their technical
implementation. In this section we will comment on our sources and approach
and present some over-arching ideas about movement that do not fit into the
more specific sections below.

Our study of the performance literature drew on three main sources: works
on actor training and theory, traditional animation, and performance the-
ory. The texts on actor training included work by developers of influential
acting theories, such as Stanislavski [29–31] and Grotowski [10], as well as
practical training texts, such as Alberts [1]. The traditional animation re-
search leaned heavily on the Disney school, as represented by Thomas and
Johnston [34] and Lasseter [15]. The movement theorists studied include
Laban [14], Delsarte [28], and the founders of theatre anthropology, Barba
and Saverese [4].

Our approach to the literature was not to rely on a single theorist, but
to look for common properties presented by multiple researchers. We synthe-
sized a list of these and used them as the basis for our computational tools.
The properties were grouped into three categories: shape, or a pose at a par-
ticular instance in time; transitions, or transient properties related to how a
character moves from one pose to the next; and timing, or properties related
to the time structure of the movement. This categorization helped facilitate
computational implementation, as different constructs are used for each of the
categories. Examples of each category and corresponding implementations are
presented below.

There are several lessons from the literature that do not fit into any of
these categories, but shape our understanding of expressive movement. The
first is simply that performance movement is different from daily-life move-
ment. Barba [3] argues that performance movement is based on excess [3] in
order to create a heightened impact with the audience. Clear communication
is a fundamental requirement of performance movement. For this reason, per-
formance draws on the twin principles of simplification [4, 15, 16, 19, 34] and
exaggeration [3, 15, 34]. The amount of movement you show an audience is
reduced and simplified in order to ensure that they notice the intended move-
ments. These movements are then exaggerated to make them still easier for
an audience to read.

24.6 Shape

24.6.1 Performance Theory

Numerous parts of the body have specific expressive uses. For instance,
Delsarte [28] refers to the shoulder, elbow and wrist joints as thermometers
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because he feels they indicate how much rather than what kind of expres-
sion [28]. Raised shoulders act to strengthen any action; the more they are
raised, the stronger the action. He argues no intense emotion is possible with-
out the elevation of the shoulders, or forward contraction in the case of fear
or backward pull to show aggression or defiance. The collar bones also play
an important role in opening and closing the chest. Meanwhile, “The elbow
approaches the body by reason of humility, and moves outward, away from
the body, to express pride, arrogance, assertion of the will.” [28, p. 41]

The shape of the torso is of significant expressive importance and has
received limited attention in the computer graphics field. Laban suggests that
there are three principal components of trunk movement: rotational movement
about the length of the spine; “pincer-like” curling from one or both ends of
the trunk and “bulge-like” shifting of the central area of the trunk out of its
regular position [14]. The “S” curve or “Beauty Line” in the coronal plane
involves the legs, torso and neck in making a large S curve with the entire
body. It is a key pose in Indian dance, ancient Greek sculpture – the Venus
de Milo offers a clear example (Figure 24.2) – and was taken up by Florentine
sculptors in the 14th century [4].

Posture is one of the clearest indicators of both a character’s overall per-
sonality and emotional state. Alberts suggests that posture is a combination
of two components: the level of tension displayed in the body and the over-
all body position (e.g., standing, leaning, kneeling, lying down) [1]. Alberts
proposes the following posture scale: hunched, stooped, slumped, drooped,
slouched, sagging, tired, relaxed, straight, upright, uptight, erect and over-
erect (at attention).

The term recoil is employed in two different ways. One, referring to an
anticipatory effect, will be discussed in the Section 24.7. The other will be
dealt with here. Delsarte’s Law of Reaction [28, 33] suggests that the body
recoils not in preparation for an action but in reaction to either an emotional
stimulus or the climax of an emotional state. Any object that surprises us

Fig. 24.2. Venus de Milo.
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will make the body react in recoil; the degree of recoil is related to the degree
of emotion caused by the object [28]. Consider, for example, the reaction to
a snake that has suddenly appeared, as opposed to seeing a cute puppy. In
general, leaning one’s torso away from an object indicates repulsion while
leaning it toward an object indicates attraction [28].

Balance adjustments are fundamental to expressive movement. Indeed,
Barba claims that the “dance of balance” is revealed in the fundamental
principles of all performance forms [4]. Being near the edge of balance or
slightly off balance greatly heightens the excitement of a performer’s move-
ments [14,32]. When we stand in daily life, we are never still, but rather are
constantly making small adjustments, shifting our weight to the toes, heels,
right side, left side, etc. These movements should be modelled and amplified
by the performer [4].

Extent or extension refers to how far an action or gesture takes place from a
character’s body. It can be thought of as how much space a character is using
while completing an action. Full extension of arms held straight out would
constitute maximal extension, while pulling the hands against the torso with
elbows held tightly to the side would be minimal extension. Laban refers to the
area around a person’s body as the kinesphere and defines three regions within
it [32]. The near region is anything within about ten inches of the character’s
body and the area for personal, intimate or perhaps nervous actions. The
middle area is about two feet from the person’s body and this is where daily
activities take place, such as shaking hands. The area of far extent has the
person extended to full reach. It is used for dramatic, extreme movements.

Amplitude is a concept related to extent that can also be quite powerful.
One of Grotowski’s exercises asks an actor to take a large action and perform
it repeatedly, each time reducing the amplitude while trying to maintain the
same energy [32]. The actor goes to 50%, then 40%, eventually working down
to 3% and 2%. The result is a movement that is very small and subtle, but very
energized and alive. Exaggeration works in the opposite direction, increasing
the amplitude of a motion.

24.6.2 Implementation

As individual tools for shape modelling in the system are adapted from the
performance literature, several aesthetic and practical constraints arise that
must be accommodated when solving for a character’s pose. For instance, we
might want the character to assume a particular posture, with a particular
balance shift, while also touching an object and keeping his feet planted on the
ground. Many of these issues must be solved together, and different aesthetic
aspects of movement will relate to different constraints. For this reason, we
placed the logic for calculating pose within a module called a body shape solver
that handles these issues collectively. The behaviour of this module is in turn
controlled by individual properties that relate to specific aspects of pose.
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The body shape solver combines balance adjustment, world space con-
straints on the character’s wrists and feet, and soft aesthetic constraints in
determining poses for a standing character. It uses a combination of feedback-
based balance control and analytic and optimization based inverse kinematics
(IK). In mime, the body is divided into four sections: the head, the torso, the
arms and the legs [16]. We follow this organization when designing our IK
routines because it allows us to construct handles for our shape solver that
provide direct adjustment for each of these expressively different parts of the
body. For instance, the approach allowed us to include direct control over a
character’s pelvic twist.

Balance control was included due to the expressive importance of balance
shifts and is based on a simple feedback mechanism [23, 37]. A forward or
lateral shift of the character’s desired balance point can be specified by the
animator. The character’s actual centre of mass (COM) is projected onto the
ground plane and an error term measures the distance between the actual
and desired COM projections. This error is weighted and used to adjust the
angles of one of the ankles by the feedback controller, reducing the error. The
remaining angles in the lower body are solved using IK [23].

Analytic IK routines were derived for the lower body chain that goes from
one foot to the other, the arms, and the gaze direction of the head. An opti-
mization based routine is used to determine the final torso pose. This allows
the solver to trade off reach constraints, which request a certain distance
between the character’s shoulder(s) and a world space location(s), against
aesthetic constraints on the curvature of the spine [23].

Many of the aesthetically important aspects of body shape discussed above
are of a low level, relating to movements of particular parts of the body, such
as raising the shoulders or curving the spine in a particular way. These low-
level aspects of body-shape were used to design the parameterization of pose
space embedded in the body-shape solver. For example, the solver provides
direct control over the swivel angle of the arm (the rotation around the axis
extending from the wrist to the shoulder). This allows control over the distance
the elbow lies from the chest. A reduced DOF parameterization of the spine
was developed based on the key torso movements. The final spine shape is
defined by three amplitudes: one for the transverse twist, or rotation along
the axis of the spine; one for the sagittal curve, or forward and backward
deformation; and one for the coronal curve, or sideways deformation. The
transverse amplitude is evenly distributed between the spinal joints. Each of
the sagittal and coronal amplitudes are multiplied by weighting factors to
determine the value of each spinal DOF. These weighting factors induce one
of a “small C”, “large C”, “small S”, “large S”, or no deformation in the spine
as visualized for the coronal plane in Figure 24.3.

In a similar manner, the collar bones can be set either to align with or
oppose each other and can be moved up and down, or forward and back.
Taken together, the spine and collar bone movements span the important
torso deformations identified in the arts literature and do so with a small set
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Fig. 24.3. Emphasized for illustrative purposes, the five coronal shape classes for
the spine are shown from left to right: large C, small C, large S, small S, straight.

of parameters, providing efficient control. Each of these low-level parameters
can be directly controlled by invoking the appropriate property.

Other aspects of shape are of a higher level, relating to a character’s over-
all pose. Examples include recoil and postural erectness. These changes could
be achieved by tediously adjusting low-level parameters. To allow more direct
control, we introduce a new form of property called a shape set [23]. Shape
sets encapsulate a particular type of higher level pose deformation and pro-
vide direct and simple control through a small set of parameters. As with all
properties, shape sets consist of a short piece of code. Different poses can be
specified as a vector of low-level parameters and shape sets define interpo-
lation functions between a small set of such vectors. Alberts’ posture range,
discussed above, is defined in one shape set with a single parameter that spec-
ifies any location on the range between “over-erect” and “hunched”. Another
shape set implements “recoil” in the “Law of Reaction” sense of the term. It
takes as parameters a world-space location and an intensity scalar. Invoking
the shape set will cause the character to recoil back from the given location.
Changing the intensity value changes how much the character recoils. Different
recoil shape sets implement different forms of recoil.

Extent and amplitude, are completely defined within properties. The extent
property allows the location of the wrists to be scaled up and down relative
to the the centre of the character’s body. The amplitude edit increases or de-
creases the angular range spanned by the DOFs during a movement sequence.
Implementation details can be found in [21].

24.7 Transition

24.7.1 Performance Theory

Transition refers to how a character moves from pose to pose, along with
other transitory effects. Disney animators found it effective to have the bulk
of film footage near extreme poses (keyframes) and less footage in between in
order to emphasize these poses [15,34]. They referred to this as “slow in, slow
out”, indicating that when the animation is shown, most of the time is spent
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on the main poses. Interpolating splines are used to generate this result in
computer animation [15], and this effect is known as an “ease-in, ease-out”
curve. Often splines are parameterized to go beyond this, such as with tension,
continuity and bias splines [13]. This reflects the importance of having some
motions start slowly and end quickly and other motions do the opposite. We
refer to this profile of the speed of a movement over its duration as the motion
envelope.

Laban’s Effort analysis describes transitory aspects of movement using the
parameters flow, weight, space and time [14, 32]. Each parameter can either
be indulged in or resisted. The work of Chi et al. [6] shows that much of this
variation can be captured by properly parameterizing the transition curves
that define the motion envelope.

The motion envelope is not necessarily spatially bound by the end points of
the motion. For instance, recoil is one of the most frequently cited movement
properties [3,8,14,15,28,33,34]. As a transition property, recoil involves first
making a movement in the opposite direction of the intended movement, fol-
lowed by the intended movement itself [8].1 Thus, recoil serves to underscore
and accentuate a movement [8]. It is one aspect of the more general concept
of anticipation important in traditional animation [15,34] and is described by
Barba as The Negation Principle because by moving in a direction opposite
to the action one is effectively negating the action before it is performed [3].
This creates a void in which the contrasting action can exist. In addition to
recoil, some movements will exceed their end point before returning to it. This
is referred to as overshoot.

The interplay of tension and relaxation is another widely cited movement
property [3, 7, 14, 16, 28] and the other main transition property we consider.
Tension and relaxation naturally interleave: there must first be relaxation
in order for there to be tension and tension is followed again by relaxation.
There is a consequent ebb and flow of energy that accompanies changes in
tension [28]. This interplay between tension and relaxation is one way to create
opposition and build interest in movement [3, 16, 28]. A rise in tension can
serve to accent a movement [14]. Conversely, in his actor training, Stanislavski
stresses the importance of an actor being relaxed and avoiding tension in his
body [19, 29, 30]. Stiff arms and legs give the body a wooden quality, looking
like a mannequin: “What emotions can a stick reflect?” [29, p. 102].

24.7.2 Implementation

In choosing an interpolation function to include in each Transition Element,
it was necessary to span the full range of motion envelope variations described
above. A cubic Hermite embedded in space and time was selected. We parame-
terize the curve on [0, 1] to interpolate (0, 0) and (1, 1), yielding the following
simplified version of the cubic Hermite curve:
1 When used in terms of shape, recoil can refer to simply pulling back from an

object.
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H(u) = −2u3 + 3u2 + (u3 − 2u2 + u)R0 + (u3 − u2)R1,

where R0 and R1 are the start and end tangents. We thus represent a point
on our time and position curve as the tuple (t, p), defined by:

t(u) = Ht(u) (24.1)
p(u) = Hp(u) (24.2)

where Ht is a Hermite curve embedded in time, Hp is a Hermite curve em-
bedded in space and u ∈ [0, 1] is a particular parameter value. Given a desired
value of t, we can calculate the corresponding u and from that determine the
value of p in the normalized [0, 1] range. This value is then mapped to the
actual range of the DOF for the movement to determine the desired position
of the DOF. A transition function is thus defined by four samples: the initial
and final tangents of p and of t, affording us a compact way to span the range
of desired motion envelopes.

It is the importance of tension and relaxation that motivates our use of dy-
namic simulation. Humans increase joint tension by co-contraction of agonist–
antagonist muscle pairs located on either side of the joint. Motivated by this
observation, we place an antagonistic actuator at each rotational DOF in the
skeleton [20]. The antagonistic actuator is a reformulation of a proportional
derivative controller and consists of two angular springs arranged in opposition
and an angular damper in parallel:

τ = kL(θL − θ) + kH(θH − θ) − kdθ̇, (24.3)

where τ is the torque generated, θ is the current angle of the DOF and θ̇ is
its current velocity. θL and θH are the low (L) and high (H) spring set points
which serve as joint limits, kL and kH are the corresponding spring gains, and
kd is the gain on the damping term. The tension T , or stiffness of the joint,
is taken as the sum of the two spring gains: T = kL + kH . The motion of the
character is determined by forward time integration of Newton’s equations
using the accelerations generated by the torque each actuator produces.

Properties are used to set and vary the tension and damping values for
each DOF during each transition. Equilibrium point control is used to achieve
transitions. The angle of any DOF, at least at steady state, will be at the
point at which all the forces and torques acting on the limb are balanced
(summing to zero). Equilibrium point control generates limb movement by
adjusting the stiffness of the two spring gains in order to vary the equilibrium
point. This equilibrium point over time is called a virtual trajectory and may
not precisely correspond to the actual trajectory of the limb. After merging
all the tension properties, the system has a target starting and ending tension
for each DOF in a transition. At the start of the transition, spring gains are
calculated to achieve the desired starting and ending DOF values with the
specified tension and stores these values in the BRep. The system then uses
the transition functions to create virtual trajectories that interpolate these
gain values, and updates the gains at each time step.
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Tension variation affords important expressive nuances. It varies how a
character will react to external forces. Stiff characters will behave more like
rigid bodies, while loose characters will tend to “flop”. Changing tension dur-
ing a movement also provides a way to warp the motion envelope. Finally,
adjusting tension allows control over secondary motion and overshoot. If a
character brings his arm down to his side with a decrease in tension, the arm
will swing slightly, adding natural pendular movement. When a character ends
a movement in low tension, he will normally overshoot the end target before
returning to it.

24.8 Timing

24.8.1 Performance Theory

The two main components of timing are tempo and rhythm [1, 14, 16, 19, 30].
Rhythm refers to the cadence of a set of movements. For instance, the pattern
could be long, long, short, repeat. It deals with the patterning of full beats,
eighth beats, etc. Tempo refers to the speed at which motions are completed;
the speed of the beat. Tempo is independent of rhythm, in that a given rhythm
could be performed with a fast or slow tempo. Tempo changes can hasten or
draw out the action [30]. Syncopation can be used to put different accents on
beats.

Stanislavski [19, 30] argues that each character has his/her own tempo-
rhythm and it is the work of the actor to find it. The psychology literature
also suggests that people have a characteristic tempo [9]. If a character is
taking a strong decisive action, there will be only one tempo-rhythm, but
a tortured soul like Hamlet will show several different tempo-rhythms at
once [30]. Different tempo-rhythms can generate moods ranging from excite-
ment to melancholy [30].

Other terms used to define timing include duration of an action [1] and
speed, or the rate at which movements follow one another [14]. Clearly both
are related to tempo and rhythm.

Another important property, succession, deals with how a movement
passes or propagates through the body. Rarely will every limb involved in
a motion start and stop at the same time. Delsarte [28] defined two types of
succession: true or normal successions and reverse successions. In a normal suc-
cession, a movement starts at the base of a character’s torso and spreads out to
the extremities. In a reverse succession, the movement starts at the extremities
and moves inward to the centre of the character. The concept of successions
is also present in the work of numerous other researchers [10,15,30,34].

24.8.2 Implementation

Outside of a dance setting, rhythm is a difficult concept for actors to develop
a feel for, let alone to represent computationally. The French acting teacher
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LeCoq writes: “Tempo can be defined, while rhythm is difficult to grasp. ...
Rhythm is at the root of everything, like a mystery.” [17, p. 32] We do not
explicitly represent rhythm in our system. Instead, each transition element
(TElement) contains two pieces of time data: a duration and a hold time.
The duration is the amount of time it takes the character to move from the
previous pose to the desired pose. The hold time is how long the DOF should
be held at the desired value before the next transition begins. Properties
can be used to set, scale and average each of these quantities. Performing
scaling operations on the two quantities together changes the tempo of the
movement. Everything is made faster or slowed down. Performing different
scaling operations on the hold times to the durations, however, generates a
change in rhythm. This is a provisional interpretation of rhythm, as more
concrete definitions of the term are lacking. It is, however, useful in practice
as will be seen with the “old man” sketch below.

Successions are implemented as a standalone property [21] and break up
the time alignment of a pose. For a forward succession, a time delay is added
for each joint, moving from the base of the spine out to the extremities.
This is achieved by shifting the associated transition elements in a stair case
manner.

Time planning benefits from a global view. Properties operating on indi-
vidual actions may request synchronization constraints, scaling of TElement
duration and hold times, and shifting of TElements that cascade through the
timeline. A Time Planner implements a timeline semantics that works directly
on the BRep as a post-process, making use of tag data added to the TEle-
ments by properties [22]. The time planner accommodates the various types of
edits and implements elastic behaviour for the timeline where no TElements
can overlap and there can be no gaps in the timeline. All time effects are
ultimately achieved by adjusting the three time properties in the TElements:
start time, duration and hold time.

24.9 Exploration and Refinement

The power of having a language to discuss movement becomes evident when
we use that language to write novel descriptions of how a particular character
moves, and then generate animation based on these. This is the fundamental
idea behind a character sketch. The system allows an animator to write a
short description of the style of a particular character and then uses that
description to make whole scale changes to the specified animation script.

In this section, we will use a very simple animation to show the power of
character sketches and how both exploration and refinement are supported.
The animation is defined by three pairs of reach and look-at constraints and a
neutral posture. The first constraint is placed far in front of the character, and
causes him to reach for an object while looking at it. The second constraint is
close to his chest and causes him to bring the object close to inspect it. The
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third constraint is again further in front of his body, but he now looks at the
audience, giving the effect of him showing the object to the audience.2

We first apply an “old man” sketch to this motion that contains a stereo-
typed description of an old man’s movement. This is one way the system
supports exploration – the animator can very quickly try a completely differ-
ent take on the motion sequence. The edits cause the character to move more
slowly, take more time to prepare his actions, reduce movement to a more
limited joint range and make less extended movements. Using a different scal-
ing on the hold and duration times changes both the character’s rhythm and
tempo. The transition functions have been flattened to give a steadier, more
linear pace to his movements. Some high frequency shaking was also added to
the forearms, depicting what might occur with age or the onset of Parkinson’s
disease.

The character sketch for the old man is shown in Table 24.2. Each row
defines an edit, the first term is the property to apply, the curly braces specify
the recipient action (* indicates a global edit) and the rest of the entries are
parameters. The specifier {* * * 16} associated with the SetDOFAngle edit
specifies that the edit should be applied to DOF 16 in any pose, in any cycle,
in any action. DOF 16 is the axial-angle of the neck. It should be noted that
in a production system such information would be entered through a user
friendly GUI in which the joint to control would be selected on the skeleton.
The prototype system described here relies on script files.

The default posture for the old man is shown in Table 24.3. He has a bad
hunch in his back, his collar bones are curled inward and down, his knees are

Table 24.2. The old man character sketch.

#Scale duration (increase it)

SetDuration {*} REL 1.8

#Scale hold time (increase it)

SetHoldTime {*} REL 3

#adjust shape settings

SetCharShapeParam {*} 1 load oldMan.shp

#flatten the transition functions

SetTransitionFunction {*} AVG 0 0 0 0

#reduce extent

VaryExtent {*} 0.8

#add a normal succession

VarySuccession {*} normal 0.01

#reduce neck y rotations

SetDOFAngle {* * * 16} REL 0.5

#add some shake to the left and right forearms

SetShake {* * * 24|33} ABS 0.017 7

2 This sequence can be viewed online at
http://www.dgp.toronto.edu/people/neff/sketch.mp4



24 Performance Theory to Animation Tools 615

Table 24.3. The default posture for the old man sketch.

#add a slight bend to the arms

RArmLen .9 LArmLen .9

#create a hunch in the spine

SagClass SmallC

SagCentre 1.6

#create a forward and downward hunch with the collar bones

ColYCentre 1

ColZCentre -2.6

#arms should hang down when not in use

ArmsVertical true

#add some bend to the knees

rKnee .5 lKnee .5

Fig. 24.4. Default posture for different character sketches. From the left, the first
figure is the default posture, the second is the old man posture, the third is the
energetic posture and the last is the dejected posture.

slightly bent and his arms are bent as well. This default posture is shown in
the second frame of Figure 24.4. A GUI for pose control is provided and all
amplitudes in the default postures were quickly determined using the feedback
provided by this GUI.

In a second example, we demonstrate a refinement process by applying
a series of edits to the initial animation. First, we add “beauty-line” pos-
ture changes to each movement, then we slow the timing, finally we apply a
succession to increase the sense of flow. The resulting animation has a more
languid, feminine look. Such edits can also be applied on top of previous
character sketch edits.

Indeed, the refinement edits and the character sketch both use the same
language of properties and so can be directly combined. To illustrate this,
we apply an energetic character sketch (Table 24.4) to the more feminine,
languid version of the animation we have just created. This sketch is largely
the opposite of the old man sketch. The duration of movements is decreased
and the hold time is almost eliminated. Extent is increased so the character
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Table 24.4. Energetic character sketch.

#increase the speed of movements

SetDuration {*} REL .8

#almost eliminate the hold time between movements

SetHoldTime {*} REL .02

#specify a default posture

SetCharShapeParam {*} 1 load energetic.shp

#warp motion envelope to start more quickly

#this could also be done with a tension edit

SetTransitionFunction {*} AVG 0 0 3 0

#increase the extent of actions

VaryExtent {*} 1.3

Table 24.5. Base posture for the energetic sketch.

#slightly shorten the arms

RArmLen .95 LArmLen .95

#keep the arms out from the character’s side (slight asymmetry)

#angle of arm relative to side

RArmAngle 10

LArmAngle 6.5

#arch backwards in the sagittal plane

SagClass SmallS

SagCentre 1.4

#raise the shoulders and pull them back

ColYCentre -.9

ColZCentre 1

#arms should hang down when not in use

ArmsVertical true

takes up more space with its movements. Transition functions are warped so
that motions start more quickly. The result is a much perkier version of the
motion.

Table 24.5 shows the default posture that is used with the energetic sketch.
The character thrusts its chest out and pulls its shoulders up and back. The
arms are held out from his side so the character can indulge in the use of
space. Arms are bent slightly to suggest some tension in the elbows. Note:
this blends with the previously specified beauty-line posture.

Finally, we apply a dejected character sketch (Table 24.6) to the original
motion. Dejected is an interesting example as it shares much in common with
the old man, and yet it should still make a distinct impression. The dejected
sketch does feature a smaller extent edit than the old man sketch and joint
ranges are not restricted. Similarly, both sketches slow the timing, but the
exact value is different. The most significant difference is in how the motion
envelope is warped. The old man sketch contains an edit that generates slightly
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Table 24.6. Dejected character sketch.

#increase the duration

SetDuration {*} REL 1.3

#increase the hold time by a factor of 5

SetHoldTime {*} REL 5

#set the default posture

SetCharShapeParam {*} 1 load dejected.shp

#apply a slight forward succession

VarySuccession {*} normal 0.1

#reduce the extent of actions

VaryExtent {*} 0.9

#decrease shoulder tension during each movement for the shoulders

SetTensionValues {* * * 20-22, 29-31} ABS 400 100

#scale damping to match tension

SetDamping {* * * 20-22, 29-31} ABS 10

#similar edits are applied to the rest of the torso and arm joints.

Table 24.7. Base posture for the dejected sketch.

#arch the character to the right in the coronal plane

CorClass LargeC

CorCentre .4

#arch the character forward in the sagittal plane

SagClass LargeC

SagCentre 1.

#adjust the arms so they hang close to the character’s side given

the torso position

#angle of arm relative to side

RArmAngle 4

LArmAngle -3

#hunch the shoulders down

ColZCentre -1

#arms should hang down when not in use

ArmsVertical true

flattened kinematic transition functions. The dejected sketch instead uses ten-
sion reduction to warp the motion envelope. For each transition, the tension
will start high and end quite low. This causes the motion to start slowly and
speed up towards the end. The low final tension also leads to overshoot effects
as the arm will waver in its final position or sway at the character’s side. This
looseness indicates a sense of indifference that is consistent with dejection.
The tension decrease also gives the sense that the character hurls himself into
each motion, but loses energy part way in.

The default posture for the dejected sketch is shown in Table 24.7. Like
the old man, the collars are dropped, but they are not curled forward. Also
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a larger curve for the spine is used to suggest less of a hunch and more of a
sense of weight. While the old man is fairly symmetrical, the dejected posture
is assymetric to help generate a sense of unease.

24.10 Property Integration

Once the animator has completed the motion specification process via the
various input channels, there are several active sources of information in the
system that will all affect how the final animation is generated. These in-
structions must be combined in a consistent and predictable way in order to
generate the final motion specification, as shown in Figure 24.1. This is the
job of the Movement Property Integrator, or MPI for short, which must map
all the higher level concepts into the base representation which is used to pro-
duce the animation. Before describing this process, we will first formalize the
concept of the base representation and script as this will be necessary for the
discussion below.

24.10.1 Formalization of the Base Representation and Script

The BRep is a random access data store that provides all the information
necessary for either a kinematic or dynamic simulator to generate a final an-
imation. Recall from its description in Section 24.3 that a BRep contains a
track for every DOF in the skeleton and additional signal parameter tracks
that specify control data for real time animation functions, such as varying
the character’s balance point or amount of pelvic twist. Each track is time or-
dered. A track T can be populated with either Transition Elements or Control
Parameters:

T = 〈a0, a1, a2, · · · , ak〉, ai ∈ {ControlParam, TransitionElement}.

We define T to be the set of all such sequences T . TransitionElements are
set by the planning process, described below (Section 24.10.2). They describe
how a DOF should change over a short period in time and are used for planned
motion. ControlParams are valid for one time step and are set by reactive con-
trollers during the motion generation process to effect real-time adjustments
(Section 24.11). They can override the values of a previously defined Tran-
sitionElement for a time step. Both elements provide the necessary data for
either a dynamic or kinematic simulator to advance the state of the character.

Any instance B of a base representation is an m-tuple of tracks containing
at minimum one track for each DOF. Thus B ∈ T

m, or

B = (T1, · · · , Tm).

The index i identifies the DOF in the character’s state to which track Ti

is bound. Index values above the number of DOFs in the character state
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correspond to signal parameter tracks. We define the space of all base repre-
sentations B to be all such B.

The BRep is incrementally and iteratively constructed during a motion
specification process. This creates a sequence of refinements of valid BReps

〈B0, B1, · · · , Bn〉,

where Bi ∈ B and i indicates the ith iteration on the BRep. Any such Bi may
well be executable by the simulator, but the final element Bn should be seen
as a “converged” base representation. The initial base representation, B0, is
the null-operation, and is defined to be an m-tuple of empty tracks. With
each iteration, more information is added or existing information is modified
in the representation.

The Base Representation supports a set of commands and query operations
which can be accessed by the properties. It is by using these operations that
the properties ultimately achieve their functionality. The main commands and
queries are summarized in the Appendix. Some commands simply add tags to
transition elements that do not affect the final animation, but can be queried
by other processes. For example, a tag might be added to increase the start
time of subsequent actions, but the final change would be made by the Time
Planner.

An animator does not interact with the BRep, and in general, need not be
aware of it. The animator specifies the actions to be performed by a character
in a script S (Section 24.4) containing a time-ordered series of actions that may
overlap. The script can be thought of as a high level list of actions performed,
whereas the BRep is similar to a keyframe system. More formally, a script
consists of an unordered set of tracks R which each contain a time ordered
sequence of actions:

R = 〈ai〉, ai ∈ Action ∧ StopT ime(ai) ≤ StartT ime(ai+1),

S = {R1, · · · , Rn}, n ≥ 1.

Normally, n is about 5. Actions (see Section 24.3.1) provide a rough descrip-
tion of a movement that is modified through the application of properties.
The animator defines an initial script which outlines the animation sequence
and can directly edit it during any iteration of the animation. It can also be
modified by generator properties. Character sketches and animator edits are
applied to change the form of the motion.

24.10.2 Generating a Motion Plan

The Movement Property Integrator is responsible for mapping the various
forms of input into an executable motion plan, stored in the BRep. The stages
involved in this process are shown in Figure 24.5 and described below. The
script is first refined, all active properties in the system are then resolved and
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Fig. 24.5. Generation of an executable movement plan, showing the three stages:
script refinement, property mapping and BRep refinement.

applied, and then the BRep goes through a final refinement stage. In a single
iteration, the system transforms the user’s input to an animation sequence.
The system always generates an animation.

The MPI operates by applying properties, triggering solvers and running
filters. Most of the “knowledge” of how to modify movement is contained in
these entities and the MPI’s job is rather one of coordination and arbitration.
Multiple properties may attempt to modify the same underlying data (e.g.,
a DOF angle at a particular time) and the MPI determines how to correctly
merge them. It must also order all operations so that data created by one
process will be in place before it is needed by another. All this must be done in
a manner that is consistent and predictable to ensure that high level animator
adjustments have the expected result.

Due to the complex interactions among primitives and the current state of
the motion plan, operators are required that clarify how high level instructions
are decomposed into an executable base representation. The MPI makes use
of four classes of operators for: script refinement (Q), attaching properties to
actions (α), executing properties (M), and refining the BRep (F).

Algebraically, any operator Q is a mapping from the script, together with
information about how the script is to be modified, to a script. More formally,
the operator Q : S×PG → S, where PG is the set of generator properties. The
other operators can be defined in a similar manner. The operator α attaches
properties to actions in order to apply animator edits and the character sketch.
It can be represented as α : A × P → A where P is the set of movement
properties and A is the set of actions that are modified by these properties. The
M operators execute the properties to update the BRep: M : B×A×P → B.
Finally, the F operators also update the BRep, but take only the BRep as
input: F : B → B. The MPI thus functions by composing a sequence of
mapping operations: 〈Q1, . . . , Qk, α1, · · · , αl,M1, · · · ,Mm, F1, . . . , Fn〉 where
the comma is taken to mean the composition of functions. It is the MPI’s job
to specify, order and trigger these mapping operations. The ordering described
here, and implemented in the current system, is designed to minimize conflicts
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between the various properties and to ensure that properties are applied ahead
of when they are used. For instance, it will be seen below that signal parameter
properties are applied before shape calculator properties because they will be
needed by the shape calculator. The construction of an animation is essentially
iterative.

In building the motion plan, the MPI begins by applying all the generator
properties contained in the character sketch or animator edits. These prop-
erties act to update the script Si by adding new actions to it, for instance,
adding nervous hand twitches to a motion sequence:

MPI : Si → Si+1 .

The operator Q is then quite simply the application of a generator property:
〈Qi〉 = 〈Pj〉.

Once the generator properties have been dealt with, the remaining edits in
the character sketch and animator edit lists act to attach properties to actions
in the script. The MPI performs this binding through the α operators:

α : Si(Aj), CharacterSketch,AnimatorEdits → Si(Aj+1) ,

where Aj is the initial set of actions and Aj+1 is the evolving set of actions as
they are augmented with further properties. For example, during this stage,
a default posture, reach constraints, weight shifts and posture edits might all
be attached to an action.

Note that the ordering in which properties are attached does not matter
because each property contains a priority tag which indicates the source of
the property. Before properties are merged, they are sorted based on these
tags.

Once the script has been completed and all properties have been at-
tached, the MPI uses this information to develop the executable Base Rep-
resentation. This is done by performing a sequence of mapping operations:
M = 〈M1,M2, . . . ,Mn〉, where once again, the operator has the form M :
B×A×P → B. The ordering of these operators is based on the type of prop-
erty being applied as some property types need to be applied ahead of others.
The current mapping order is as follows:

1. Generate signal parameters (M1).
2. Apply shape solver properties (M2).
3. Apply other shape properties (M3).
4. Apply timing properties (M4).
5. Apply transition properties (M5).
6. Apply properties that need to query the BRep (M6).

Each operator normally consists of a merge phase followed by an apply
phase. Composite properties are handled somewhat differently. The merge
phase is the same as for other properties, but the apply phase acts by attaching
a new set of low-level properties to the actions rather than writing directly
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into the BRep. Composite properties are processed first so that the low-level
properties they generate can be merged with other active properties.

The effect of the six operators can be more precisely specified. M1,M3,M4

and M5 all take the basic form:

M(Bi, A, PA) = Bi+1,

where M is the mapping operator, A is an action included in the script and PA

is a set of properties of a given type associated with A. These mappings take
all of the properties of a particular type that are attached to the specified
action and map them to the BRep, generating its next iteration. In these
mappings the properties are blind: i.e., they have no knowledge of the data
that may already be stored in the BRep. The mapping operations are repeated
for every action in the script. Some timing and transition properties will write
tags into Transition Elements to request effects such as synchronization. Once
all such properties have been applied, the timing and transition planners must
be run in order to generate the result.

The shape solver operator M2 is slightly more complicated and involves
multiple steps. The first operator to be applied has the form

M(D0, A, PA) = D1,

where D is a data store associated with the shape solver for the current action.
All shape solver properties associated with the action write parameters into
D. The shape solver is then invoked, which solves for a pose and writes the
result back into the action as a set of SetDOFValue properties. This can be
represented in operator form as:

α(Pss, A
i) = Ai+1

where Pss are the properties determined by the shape solver. The final step
is to merge and apply these properties using the M3 operator:

M(Bi, Ai+1, PA) = Bi+1.

The M6 operator has the form

M(Bi, A, PA(Bi)) = Bi+1.

The distinction here is that these properties can have a dependency on the
existing iteration of the BRep whereas in previous M operators, they could
not. Properties can query the BRep.

Merge: Before a property writes its data into the Base Representation, all
properties of a given type acting on a specific action level are merged. Actions
in general may have multiple properties of a given type attached, coming from
different input sources: the initial action description, the character sketch and
animator edits. It is important that all the applied properties can potentially
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affect the final motion, rather than one property replacing all earlier properties
of a given type. This is what, for instance, allows the character sketch to adjust
an existing movement sequence, rather than define it and greatly increases the
flexibility and power of these edits. The “merge” resolution process effectively
leaves a single property of each type attached to an action level.

The merge process involves three steps. First, properties are pushed down
to the lowest level of the action hierarchy at which they can act. This ensures
that all properties of a given type will be at the same level in the hierarchy
when the merge is performed. Second, properties are sorted based on priority
level. Priority level is determined based on the property source (default order:
action description first, then character sketch, animator edits are last) and
the level in the hierarchy the property is defined at (higher levels being used
first). Finally, the sorted property list is merged. Prototype merge functions
are available which support merges that overwrite (ABSolute), scale by a
factor (RELative), average (AVeraGe) or add (ADD) the individual property
parameters. Properties can also define their own merge semantics. This allows
the property designer to decide how a property can best be merged. As an
example, the SetDuration property supports absolute and relative duration
specifications, the latter acting to scale a lower priority absolute duration.

Apply: Once the properties have been merged, the application process is
quite straightforward. The one property of each type that is still active at
an action node has its apply method called and simply writes its data either
into the BRep or a data store associated with a solver. Once data has been
committed to the BRep, it can be queried by future properties and filters.

BRep Refinement: Once the action-based properties have been applied,
the BRep can be further refined through filtering or post-processing. These
operators act in a similar manner, where for a filter F ,

F (Bi) = Bi+1.

Unlike the M operators, these processes make no reference to the script, work-
ing solely from the information contained in the BRep. An example of such
a filter is the Time Planner described previously which enforces the timeline
semantics. Filters are a powerful notion as they admit the full extent of signal
processing to be incorporated into the framework.

24.10.3 Property Implementation

As can be seen from the preceding discussion, properties must regulate both
how they are to be combined with other properties and how they will update
the base representation. In order to do this, they must define the data outlined
in Table 24.8 and also implement the functions described in Table 24.9. If a
property is applied to multiple actions, it will be replicated and a separate
instance of the property will be applied to each action.
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Table 24.8. Properties must include the above data. Many of these data items are
used in property merging.

Data Description

Combination
type

Specifies how the property should be combined with other prop-
erties of the same type. (e.g., ABS, AVG, ADD and REL, as
per the main text)

Category Specifies which aspect of movement the property affects. Cat-
egories include: shape solver, shape, timing, transition, post-
burn in, generator, applicator, reactive controller and other

Priority level Determines the order properties are merged based on the source
of the property and the level in the action hierarchy at which
it is applied

Minimum
property level

This indicates the lowest level in the action hierarchy at which
this property makes sense (e.g. cycle or DOFEntry)

bCombinable Flag that states whether this property should be merged with
other properties of the same type or should just be directly
applied

Parameters Most properties will define their own set of parameter values

Table 24.9. Properties must implement these three functions. Properties that are
not combinable can implement stubs for GetParamString and Combine.

Function Description

GetParamString A property must be able to return its paramater values as a
string. The strings can be passed between properties of the same
type, which can decode them and use them in merge operations

Combine Properties define how they can be merged, including what
merge types they will support. This is done by writing a com-
bine function

Apply Every property must define this function. It is called to execute
the property. This triggers the property to generate its output

24.11 Movement Generation

Once the BRep has been finalized, it must be executed to generate an an-
imation. This process, for one time step, is shown in Figure 24.6. Reactive
controllers allow the character to adjust its behaviour based on its state at
the beginning of the time step. This is particularly important in dynamic
simulation, where the effect of an action is not completely known ahead of
time and adjustments may need to be made in order to ensure that a motion
completes successfully. The main reactive controller in our system is used for
balance control.

Reactive controllers receive the system state, the current BRep, and sensor
information as input. State is a vector of position and velocity values for every
DOF in the character. Reactive controllers can then update the BRep for the



24 Performance Theory to Animation Tools 625

B
iStatet Sensors

Reactive

Controllers

B
i+1

Control Signal

Generator

Simulator

State
t+1 Animation

Frames

Fig. 24.6. Data flow for one time step of simulation.

current time step to attempt to better achieve the requested motion. They do
this by writing Control Params into the BRep. As an example, the balance
controller adjusts the desired DOF values for the charcter’s lower body at
each time step in order to achieve the balance adjustments, knee bends and
pelvic twists specified in the signal parameter tracks of the BRep.

Once all the reactive controllers have made their adjustments, the Con-
trol Signal Generator takes the DOF tracks of the updated BRep as input
and produces the control information required by the current simulator. For
the kinematic simulator, this information consists of the value of each DOF.
The dynamic simulator requires a torque for each DOF. The torque values
are generated by either a proportional derivative or an antagonistic actua-
tor positioned at each DOF and the Control Signal Generator provides the
appropriate gain and set point data.

The simulator takes the input from the control signal generator and ad-
vances the simulation Δt seconds, updating the character state and produc-
ing animation frames. The dynamic simulator is based on code generated by
the commercial software SD/Fast [11]. The kinematic simulator implements
a standard articulated body hierarchy. The entire software system is built on
top of the DANCE framework [27].

24.12 Discussion and Conclusions

We believe the incorporation of familiar concepts from the performing arts
results in an appealing animation workflow that will attract a new and wider
community to engage in the creation of expressive human animation. The
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project is not without considerable challenges, but we have presented an ex-
tensible system that permits the expressive concepts to be mapped into actions
and properties in a manner that admits both a precise semantics and a way
to resolve multiple properties into an overall motion plan.

Much more work is required to adapt a wider array of motion primitives
on a more diverse set of motions. Better solutions to the balance problem
are likely the main requisite for extending the approach to a wider array of
physically simulated motions. In extending the expressive range of the system,
the performance literature remains a rich resource that is far from exhausted.
There are numerous concepts, such as the path a motion takes in space, that
could be easily incorporated into the system, and many more that ellude
easy computational definition, such as an actor’s ability to react to another
actor. The scaling properties of the motion property integrator have yet to be
explored fully in light of the extensibility of the system. As the “language” of
properties is increased and computational definitions developed, it is our hope
that this work might contribute back to the performance community, serving
as a test bed for our understanding of movement.

Theory-based approaches such as described here and data based ap-
proaches, as discussed in much of the rest of this volume, need not be
antithetical. Indeed, data and learning based analyses could be used to gener-
ate models of specific movement properties. Similarly, the arts literature can
provide guidance when pursuing data based approaches as to which aspects of
movement are worth modelling. Hopefully this work will lead to the creation
of more fine-scale data based models of specific aspects of movement, informed
by the arts literature. Such approaches offer the potential to combine good
animator control, as demonstrated here, with the detail of data based mod-
els. It should be possible to combine both data-derived properties and hand
designed properties within our system.

Appendix

The following tables outline the major commands and queries that are used
in writing the movement properties.

Table 24.10. Structural commands acting on the Base Representation

Command Description

SetControlParams Sets a control param that is valid for a single time step
AddTransitionElement Creates and adds a transition element to a given track

of the BRep at a given time
InsertPose Inserts a new pose into the midst of a current action
RemoveTransitionElement Removes a transition element from the BRep
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Table 24.11. BRep commands that update animation attributes.

Command Description

SetStartTime Sets the time the TElement becomes active
SetStopTime Sets the time the TElement ceases to be active
ShiftTimes Shifts the whole transition element (start and stop

times)
SetDuration Sets the duration of a transition from the initial value

of the DOF to the desired value
SetHold Specifies how long the DOF value should be held for
SetDamping Sets the damping value used during the transition
Set{Start|End}Tension Sets the tension values used in dynamic simulation
SetDOFValue Sets the desired DOF value for the end of a transition
Set{Start|Stop}Value Used for control parameter transition curves, specify-

ing both the initial and final value of the DOF
SetTransitionTangents Set the four tangent values that define a cubic Hermite

transition curve
ApplyOffsetCurve Specifies an offset curve that is added to the transition

curve

Table 24.12. Commands for adding meta data to TElements.

Command Description

SetActionLabel Sets the label that is used to identify the TElement.
The label links it back to the generating action

SetTag Allows a generic tag to be added to a given TElement.
The tag has a name and a parameter

Table 24.13. Queries supported by the BRep.

Query Description

GetTElementsWithName Returns all the transition elements that match the
given label. It can get a specific TElement, all the TEle-
ments for a given pose etc.

GetDOFValue Returns the desired value of the Transition Element
GetStartTime Returns the start time of a specified Transition Element
GetStopTime Returns the stop time of a specified Transition Element
GetDuration Returns the duration of a specified Transition Element
GetTag Returns the tag data given a tag name
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